This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlimres | |- ( F ~~>r A -> ( F |` B ) ~~>r A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 | |- ( dom F i^i B ) C_ dom F |
|
| 2 | ssralv | |- ( ( dom F i^i B ) C_ dom F -> ( A. z e. dom F ( y <_ z -> ( abs ` ( ( F ` z ) - A ) ) < x ) -> A. z e. ( dom F i^i B ) ( y <_ z -> ( abs ` ( ( F ` z ) - A ) ) < x ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( A. z e. dom F ( y <_ z -> ( abs ` ( ( F ` z ) - A ) ) < x ) -> A. z e. ( dom F i^i B ) ( y <_ z -> ( abs ` ( ( F ` z ) - A ) ) < x ) ) |
| 4 | 3 | reximi | |- ( E. y e. RR A. z e. dom F ( y <_ z -> ( abs ` ( ( F ` z ) - A ) ) < x ) -> E. y e. RR A. z e. ( dom F i^i B ) ( y <_ z -> ( abs ` ( ( F ` z ) - A ) ) < x ) ) |
| 5 | 4 | ralimi | |- ( A. x e. RR+ E. y e. RR A. z e. dom F ( y <_ z -> ( abs ` ( ( F ` z ) - A ) ) < x ) -> A. x e. RR+ E. y e. RR A. z e. ( dom F i^i B ) ( y <_ z -> ( abs ` ( ( F ` z ) - A ) ) < x ) ) |
| 6 | 5 | anim2i | |- ( ( A e. CC /\ A. x e. RR+ E. y e. RR A. z e. dom F ( y <_ z -> ( abs ` ( ( F ` z ) - A ) ) < x ) ) -> ( A e. CC /\ A. x e. RR+ E. y e. RR A. z e. ( dom F i^i B ) ( y <_ z -> ( abs ` ( ( F ` z ) - A ) ) < x ) ) ) |
| 7 | 6 | a1i | |- ( F ~~>r A -> ( ( A e. CC /\ A. x e. RR+ E. y e. RR A. z e. dom F ( y <_ z -> ( abs ` ( ( F ` z ) - A ) ) < x ) ) -> ( A e. CC /\ A. x e. RR+ E. y e. RR A. z e. ( dom F i^i B ) ( y <_ z -> ( abs ` ( ( F ` z ) - A ) ) < x ) ) ) ) |
| 8 | rlimf | |- ( F ~~>r A -> F : dom F --> CC ) |
|
| 9 | rlimss | |- ( F ~~>r A -> dom F C_ RR ) |
|
| 10 | eqidd | |- ( ( F ~~>r A /\ z e. dom F ) -> ( F ` z ) = ( F ` z ) ) |
|
| 11 | 8 9 10 | rlim | |- ( F ~~>r A -> ( F ~~>r A <-> ( A e. CC /\ A. x e. RR+ E. y e. RR A. z e. dom F ( y <_ z -> ( abs ` ( ( F ` z ) - A ) ) < x ) ) ) ) |
| 12 | fssres | |- ( ( F : dom F --> CC /\ ( dom F i^i B ) C_ dom F ) -> ( F |` ( dom F i^i B ) ) : ( dom F i^i B ) --> CC ) |
|
| 13 | 8 1 12 | sylancl | |- ( F ~~>r A -> ( F |` ( dom F i^i B ) ) : ( dom F i^i B ) --> CC ) |
| 14 | resres | |- ( ( F |` dom F ) |` B ) = ( F |` ( dom F i^i B ) ) |
|
| 15 | ffn | |- ( F : dom F --> CC -> F Fn dom F ) |
|
| 16 | fnresdm | |- ( F Fn dom F -> ( F |` dom F ) = F ) |
|
| 17 | 8 15 16 | 3syl | |- ( F ~~>r A -> ( F |` dom F ) = F ) |
| 18 | 17 | reseq1d | |- ( F ~~>r A -> ( ( F |` dom F ) |` B ) = ( F |` B ) ) |
| 19 | 14 18 | eqtr3id | |- ( F ~~>r A -> ( F |` ( dom F i^i B ) ) = ( F |` B ) ) |
| 20 | 19 | feq1d | |- ( F ~~>r A -> ( ( F |` ( dom F i^i B ) ) : ( dom F i^i B ) --> CC <-> ( F |` B ) : ( dom F i^i B ) --> CC ) ) |
| 21 | 13 20 | mpbid | |- ( F ~~>r A -> ( F |` B ) : ( dom F i^i B ) --> CC ) |
| 22 | 1 9 | sstrid | |- ( F ~~>r A -> ( dom F i^i B ) C_ RR ) |
| 23 | elinel2 | |- ( z e. ( dom F i^i B ) -> z e. B ) |
|
| 24 | 23 | fvresd | |- ( z e. ( dom F i^i B ) -> ( ( F |` B ) ` z ) = ( F ` z ) ) |
| 25 | 24 | adantl | |- ( ( F ~~>r A /\ z e. ( dom F i^i B ) ) -> ( ( F |` B ) ` z ) = ( F ` z ) ) |
| 26 | 21 22 25 | rlim | |- ( F ~~>r A -> ( ( F |` B ) ~~>r A <-> ( A e. CC /\ A. x e. RR+ E. y e. RR A. z e. ( dom F i^i B ) ( y <_ z -> ( abs ` ( ( F ` z ) - A ) ) < x ) ) ) ) |
| 27 | 7 11 26 | 3imtr4d | |- ( F ~~>r A -> ( F ~~>r A -> ( F |` B ) ~~>r A ) ) |
| 28 | 27 | pm2.43i | |- ( F ~~>r A -> ( F |` B ) ~~>r A ) |