This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any function with a finite limit is eventually bounded. (Contributed by Mario Carneiro, 18-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlimo1 | ⊢ ( 𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ 𝑂(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimf | ⊢ ( 𝐹 ⇝𝑟 𝐴 → 𝐹 : dom 𝐹 ⟶ ℂ ) | |
| 2 | 1 | ffvelcdmda | ⊢ ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑧 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 3 | 2 | ralrimiva | ⊢ ( 𝐹 ⇝𝑟 𝐴 → ∀ 𝑧 ∈ dom 𝐹 ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 4 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 5 | 4 | a1i | ⊢ ( 𝐹 ⇝𝑟 𝐴 → 1 ∈ ℝ+ ) |
| 6 | 1 | feqmptd | ⊢ ( 𝐹 ⇝𝑟 𝐴 → 𝐹 = ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 7 | id | ⊢ ( 𝐹 ⇝𝑟 𝐴 → 𝐹 ⇝𝑟 𝐴 ) | |
| 8 | 6 7 | eqbrtrrd | ⊢ ( 𝐹 ⇝𝑟 𝐴 → ( 𝑧 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑧 ) ) ⇝𝑟 𝐴 ) |
| 9 | 3 5 8 | rlimi | ⊢ ( 𝐹 ⇝𝑟 𝐴 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) < 1 ) ) |
| 10 | rlimcl | ⊢ ( 𝐹 ⇝𝑟 𝐴 → 𝐴 ∈ ℂ ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑦 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 12 | 11 | abscld | ⊢ ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑦 ∈ ℝ ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 13 | peano2re | ⊢ ( ( abs ‘ 𝐴 ) ∈ ℝ → ( ( abs ‘ 𝐴 ) + 1 ) ∈ ℝ ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑦 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 15 | 2 | adantlr | ⊢ ( ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 16 | 11 | adantr | ⊢ ( ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → 𝐴 ∈ ℂ ) |
| 17 | 15 16 | abs2difd | ⊢ ( ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) − ( abs ‘ 𝐴 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) ) |
| 18 | 15 | abscld | ⊢ ( ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
| 19 | 12 | adantr | ⊢ ( ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 20 | 18 19 | resubcld | ⊢ ( ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) − ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
| 21 | 15 16 | subcld | ⊢ ( ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ∈ ℂ ) |
| 22 | 21 | abscld | ⊢ ( ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) ∈ ℝ ) |
| 23 | 1red | ⊢ ( ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → 1 ∈ ℝ ) | |
| 24 | lelttr | ⊢ ( ( ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) − ( abs ‘ 𝐴 ) ) ∈ ℝ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) − ( abs ‘ 𝐴 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) < 1 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) − ( abs ‘ 𝐴 ) ) < 1 ) ) | |
| 25 | 20 22 23 24 | syl3anc | ⊢ ( ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) − ( abs ‘ 𝐴 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) < 1 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) − ( abs ‘ 𝐴 ) ) < 1 ) ) |
| 26 | 17 25 | mpand | ⊢ ( ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) < 1 → ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) − ( abs ‘ 𝐴 ) ) < 1 ) ) |
| 27 | 18 19 23 | ltsubadd2d | ⊢ ( ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) − ( abs ‘ 𝐴 ) ) < 1 ↔ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) < ( ( abs ‘ 𝐴 ) + 1 ) ) ) |
| 28 | 26 27 | sylibd | ⊢ ( ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) < 1 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) < ( ( abs ‘ 𝐴 ) + 1 ) ) ) |
| 29 | 14 | adantr | ⊢ ( ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( abs ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 30 | ltle | ⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ∧ ( ( abs ‘ 𝐴 ) + 1 ) ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) < ( ( abs ‘ 𝐴 ) + 1 ) → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( abs ‘ 𝐴 ) + 1 ) ) ) | |
| 31 | 18 29 30 | syl2anc | ⊢ ( ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) < ( ( abs ‘ 𝐴 ) + 1 ) → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( abs ‘ 𝐴 ) + 1 ) ) ) |
| 32 | 28 31 | syld | ⊢ ( ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) < 1 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( abs ‘ 𝐴 ) + 1 ) ) ) |
| 33 | 32 | imim2d | ⊢ ( ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) < 1 ) → ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( abs ‘ 𝐴 ) + 1 ) ) ) ) |
| 34 | 33 | ralimdva | ⊢ ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑦 ∈ ℝ ) → ( ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) < 1 ) → ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( abs ‘ 𝐴 ) + 1 ) ) ) ) |
| 35 | breq2 | ⊢ ( 𝑤 = ( ( abs ‘ 𝐴 ) + 1 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑤 ↔ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( abs ‘ 𝐴 ) + 1 ) ) ) | |
| 36 | 35 | imbi2d | ⊢ ( 𝑤 = ( ( abs ‘ 𝐴 ) + 1 ) → ( ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑤 ) ↔ ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( abs ‘ 𝐴 ) + 1 ) ) ) ) |
| 37 | 36 | ralbidv | ⊢ ( 𝑤 = ( ( abs ‘ 𝐴 ) + 1 ) → ( ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑤 ) ↔ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( abs ‘ 𝐴 ) + 1 ) ) ) ) |
| 38 | 37 | rspcev | ⊢ ( ( ( ( abs ‘ 𝐴 ) + 1 ) ∈ ℝ ∧ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( abs ‘ 𝐴 ) + 1 ) ) ) → ∃ 𝑤 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑤 ) ) |
| 39 | 14 34 38 | syl6an | ⊢ ( ( 𝐹 ⇝𝑟 𝐴 ∧ 𝑦 ∈ ℝ ) → ( ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) < 1 ) → ∃ 𝑤 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑤 ) ) ) |
| 40 | 39 | reximdva | ⊢ ( 𝐹 ⇝𝑟 𝐴 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐴 ) ) < 1 ) → ∃ 𝑦 ∈ ℝ ∃ 𝑤 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑤 ) ) ) |
| 41 | 9 40 | mpd | ⊢ ( 𝐹 ⇝𝑟 𝐴 → ∃ 𝑦 ∈ ℝ ∃ 𝑤 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑤 ) ) |
| 42 | rlimss | ⊢ ( 𝐹 ⇝𝑟 𝐴 → dom 𝐹 ⊆ ℝ ) | |
| 43 | elo12 | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℝ ) → ( 𝐹 ∈ 𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑤 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑤 ) ) ) | |
| 44 | 1 42 43 | syl2anc | ⊢ ( 𝐹 ⇝𝑟 𝐴 → ( 𝐹 ∈ 𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑤 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑤 ) ) ) |
| 45 | 41 44 | mpbird | ⊢ ( 𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ 𝑂(1) ) |