This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any function with a finite limit is eventually bounded. (Contributed by Mario Carneiro, 18-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlimo1 | |- ( F ~~>r A -> F e. O(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimf | |- ( F ~~>r A -> F : dom F --> CC ) |
|
| 2 | 1 | ffvelcdmda | |- ( ( F ~~>r A /\ z e. dom F ) -> ( F ` z ) e. CC ) |
| 3 | 2 | ralrimiva | |- ( F ~~>r A -> A. z e. dom F ( F ` z ) e. CC ) |
| 4 | 1rp | |- 1 e. RR+ |
|
| 5 | 4 | a1i | |- ( F ~~>r A -> 1 e. RR+ ) |
| 6 | 1 | feqmptd | |- ( F ~~>r A -> F = ( z e. dom F |-> ( F ` z ) ) ) |
| 7 | id | |- ( F ~~>r A -> F ~~>r A ) |
|
| 8 | 6 7 | eqbrtrrd | |- ( F ~~>r A -> ( z e. dom F |-> ( F ` z ) ) ~~>r A ) |
| 9 | 3 5 8 | rlimi | |- ( F ~~>r A -> E. y e. RR A. z e. dom F ( y <_ z -> ( abs ` ( ( F ` z ) - A ) ) < 1 ) ) |
| 10 | rlimcl | |- ( F ~~>r A -> A e. CC ) |
|
| 11 | 10 | adantr | |- ( ( F ~~>r A /\ y e. RR ) -> A e. CC ) |
| 12 | 11 | abscld | |- ( ( F ~~>r A /\ y e. RR ) -> ( abs ` A ) e. RR ) |
| 13 | peano2re | |- ( ( abs ` A ) e. RR -> ( ( abs ` A ) + 1 ) e. RR ) |
|
| 14 | 12 13 | syl | |- ( ( F ~~>r A /\ y e. RR ) -> ( ( abs ` A ) + 1 ) e. RR ) |
| 15 | 2 | adantlr | |- ( ( ( F ~~>r A /\ y e. RR ) /\ z e. dom F ) -> ( F ` z ) e. CC ) |
| 16 | 11 | adantr | |- ( ( ( F ~~>r A /\ y e. RR ) /\ z e. dom F ) -> A e. CC ) |
| 17 | 15 16 | abs2difd | |- ( ( ( F ~~>r A /\ y e. RR ) /\ z e. dom F ) -> ( ( abs ` ( F ` z ) ) - ( abs ` A ) ) <_ ( abs ` ( ( F ` z ) - A ) ) ) |
| 18 | 15 | abscld | |- ( ( ( F ~~>r A /\ y e. RR ) /\ z e. dom F ) -> ( abs ` ( F ` z ) ) e. RR ) |
| 19 | 12 | adantr | |- ( ( ( F ~~>r A /\ y e. RR ) /\ z e. dom F ) -> ( abs ` A ) e. RR ) |
| 20 | 18 19 | resubcld | |- ( ( ( F ~~>r A /\ y e. RR ) /\ z e. dom F ) -> ( ( abs ` ( F ` z ) ) - ( abs ` A ) ) e. RR ) |
| 21 | 15 16 | subcld | |- ( ( ( F ~~>r A /\ y e. RR ) /\ z e. dom F ) -> ( ( F ` z ) - A ) e. CC ) |
| 22 | 21 | abscld | |- ( ( ( F ~~>r A /\ y e. RR ) /\ z e. dom F ) -> ( abs ` ( ( F ` z ) - A ) ) e. RR ) |
| 23 | 1red | |- ( ( ( F ~~>r A /\ y e. RR ) /\ z e. dom F ) -> 1 e. RR ) |
|
| 24 | lelttr | |- ( ( ( ( abs ` ( F ` z ) ) - ( abs ` A ) ) e. RR /\ ( abs ` ( ( F ` z ) - A ) ) e. RR /\ 1 e. RR ) -> ( ( ( ( abs ` ( F ` z ) ) - ( abs ` A ) ) <_ ( abs ` ( ( F ` z ) - A ) ) /\ ( abs ` ( ( F ` z ) - A ) ) < 1 ) -> ( ( abs ` ( F ` z ) ) - ( abs ` A ) ) < 1 ) ) |
|
| 25 | 20 22 23 24 | syl3anc | |- ( ( ( F ~~>r A /\ y e. RR ) /\ z e. dom F ) -> ( ( ( ( abs ` ( F ` z ) ) - ( abs ` A ) ) <_ ( abs ` ( ( F ` z ) - A ) ) /\ ( abs ` ( ( F ` z ) - A ) ) < 1 ) -> ( ( abs ` ( F ` z ) ) - ( abs ` A ) ) < 1 ) ) |
| 26 | 17 25 | mpand | |- ( ( ( F ~~>r A /\ y e. RR ) /\ z e. dom F ) -> ( ( abs ` ( ( F ` z ) - A ) ) < 1 -> ( ( abs ` ( F ` z ) ) - ( abs ` A ) ) < 1 ) ) |
| 27 | 18 19 23 | ltsubadd2d | |- ( ( ( F ~~>r A /\ y e. RR ) /\ z e. dom F ) -> ( ( ( abs ` ( F ` z ) ) - ( abs ` A ) ) < 1 <-> ( abs ` ( F ` z ) ) < ( ( abs ` A ) + 1 ) ) ) |
| 28 | 26 27 | sylibd | |- ( ( ( F ~~>r A /\ y e. RR ) /\ z e. dom F ) -> ( ( abs ` ( ( F ` z ) - A ) ) < 1 -> ( abs ` ( F ` z ) ) < ( ( abs ` A ) + 1 ) ) ) |
| 29 | 14 | adantr | |- ( ( ( F ~~>r A /\ y e. RR ) /\ z e. dom F ) -> ( ( abs ` A ) + 1 ) e. RR ) |
| 30 | ltle | |- ( ( ( abs ` ( F ` z ) ) e. RR /\ ( ( abs ` A ) + 1 ) e. RR ) -> ( ( abs ` ( F ` z ) ) < ( ( abs ` A ) + 1 ) -> ( abs ` ( F ` z ) ) <_ ( ( abs ` A ) + 1 ) ) ) |
|
| 31 | 18 29 30 | syl2anc | |- ( ( ( F ~~>r A /\ y e. RR ) /\ z e. dom F ) -> ( ( abs ` ( F ` z ) ) < ( ( abs ` A ) + 1 ) -> ( abs ` ( F ` z ) ) <_ ( ( abs ` A ) + 1 ) ) ) |
| 32 | 28 31 | syld | |- ( ( ( F ~~>r A /\ y e. RR ) /\ z e. dom F ) -> ( ( abs ` ( ( F ` z ) - A ) ) < 1 -> ( abs ` ( F ` z ) ) <_ ( ( abs ` A ) + 1 ) ) ) |
| 33 | 32 | imim2d | |- ( ( ( F ~~>r A /\ y e. RR ) /\ z e. dom F ) -> ( ( y <_ z -> ( abs ` ( ( F ` z ) - A ) ) < 1 ) -> ( y <_ z -> ( abs ` ( F ` z ) ) <_ ( ( abs ` A ) + 1 ) ) ) ) |
| 34 | 33 | ralimdva | |- ( ( F ~~>r A /\ y e. RR ) -> ( A. z e. dom F ( y <_ z -> ( abs ` ( ( F ` z ) - A ) ) < 1 ) -> A. z e. dom F ( y <_ z -> ( abs ` ( F ` z ) ) <_ ( ( abs ` A ) + 1 ) ) ) ) |
| 35 | breq2 | |- ( w = ( ( abs ` A ) + 1 ) -> ( ( abs ` ( F ` z ) ) <_ w <-> ( abs ` ( F ` z ) ) <_ ( ( abs ` A ) + 1 ) ) ) |
|
| 36 | 35 | imbi2d | |- ( w = ( ( abs ` A ) + 1 ) -> ( ( y <_ z -> ( abs ` ( F ` z ) ) <_ w ) <-> ( y <_ z -> ( abs ` ( F ` z ) ) <_ ( ( abs ` A ) + 1 ) ) ) ) |
| 37 | 36 | ralbidv | |- ( w = ( ( abs ` A ) + 1 ) -> ( A. z e. dom F ( y <_ z -> ( abs ` ( F ` z ) ) <_ w ) <-> A. z e. dom F ( y <_ z -> ( abs ` ( F ` z ) ) <_ ( ( abs ` A ) + 1 ) ) ) ) |
| 38 | 37 | rspcev | |- ( ( ( ( abs ` A ) + 1 ) e. RR /\ A. z e. dom F ( y <_ z -> ( abs ` ( F ` z ) ) <_ ( ( abs ` A ) + 1 ) ) ) -> E. w e. RR A. z e. dom F ( y <_ z -> ( abs ` ( F ` z ) ) <_ w ) ) |
| 39 | 14 34 38 | syl6an | |- ( ( F ~~>r A /\ y e. RR ) -> ( A. z e. dom F ( y <_ z -> ( abs ` ( ( F ` z ) - A ) ) < 1 ) -> E. w e. RR A. z e. dom F ( y <_ z -> ( abs ` ( F ` z ) ) <_ w ) ) ) |
| 40 | 39 | reximdva | |- ( F ~~>r A -> ( E. y e. RR A. z e. dom F ( y <_ z -> ( abs ` ( ( F ` z ) - A ) ) < 1 ) -> E. y e. RR E. w e. RR A. z e. dom F ( y <_ z -> ( abs ` ( F ` z ) ) <_ w ) ) ) |
| 41 | 9 40 | mpd | |- ( F ~~>r A -> E. y e. RR E. w e. RR A. z e. dom F ( y <_ z -> ( abs ` ( F ` z ) ) <_ w ) ) |
| 42 | rlimss | |- ( F ~~>r A -> dom F C_ RR ) |
|
| 43 | elo12 | |- ( ( F : dom F --> CC /\ dom F C_ RR ) -> ( F e. O(1) <-> E. y e. RR E. w e. RR A. z e. dom F ( y <_ z -> ( abs ` ( F ` z ) ) <_ w ) ) ) |
|
| 44 | 1 42 43 | syl2anc | |- ( F ~~>r A -> ( F e. O(1) <-> E. y e. RR E. w e. RR A. z e. dom F ( y <_ z -> ( abs ` ( F ` z ) ) <_ w ) ) ) |
| 45 | 41 44 | mpbird | |- ( F ~~>r A -> F e. O(1) ) |