This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate rising factorial to factorial. (Contributed by Scott Fenton, 5-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | risefacfac | ⊢ ( 𝑁 ∈ ℕ0 → ( 1 RiseFac 𝑁 ) = ( ! ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1cnd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 1 ∈ ℂ ) | |
| 2 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℕ ) | |
| 3 | 2 | nncnd | ⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℂ ) |
| 4 | 3 | adantl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℂ ) |
| 5 | 1 4 | pncan3d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 1 + ( 𝑘 − 1 ) ) = 𝑘 ) |
| 6 | 5 | prodeq2dv | ⊢ ( 𝑁 ∈ ℕ0 → ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( 1 + ( 𝑘 − 1 ) ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ) |
| 7 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 8 | risefacval2 | ⊢ ( ( 1 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 1 RiseFac 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( 1 + ( 𝑘 − 1 ) ) ) | |
| 9 | 7 8 | mpan | ⊢ ( 𝑁 ∈ ℕ0 → ( 1 RiseFac 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( 1 + ( 𝑘 − 1 ) ) ) |
| 10 | fprodfac | ⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ) | |
| 11 | 6 9 10 | 3eqtr4d | ⊢ ( 𝑁 ∈ ℕ0 → ( 1 RiseFac 𝑁 ) = ( ! ‘ 𝑁 ) ) |