This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate rising factorial to factorial. (Contributed by Scott Fenton, 5-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | risefacfac | |- ( N e. NN0 -> ( 1 RiseFac N ) = ( ! ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1cnd | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> 1 e. CC ) |
|
| 2 | elfznn | |- ( k e. ( 1 ... N ) -> k e. NN ) |
|
| 3 | 2 | nncnd | |- ( k e. ( 1 ... N ) -> k e. CC ) |
| 4 | 3 | adantl | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> k e. CC ) |
| 5 | 1 4 | pncan3d | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> ( 1 + ( k - 1 ) ) = k ) |
| 6 | 5 | prodeq2dv | |- ( N e. NN0 -> prod_ k e. ( 1 ... N ) ( 1 + ( k - 1 ) ) = prod_ k e. ( 1 ... N ) k ) |
| 7 | ax-1cn | |- 1 e. CC |
|
| 8 | risefacval2 | |- ( ( 1 e. CC /\ N e. NN0 ) -> ( 1 RiseFac N ) = prod_ k e. ( 1 ... N ) ( 1 + ( k - 1 ) ) ) |
|
| 9 | 7 8 | mpan | |- ( N e. NN0 -> ( 1 RiseFac N ) = prod_ k e. ( 1 ... N ) ( 1 + ( k - 1 ) ) ) |
| 10 | fprodfac | |- ( N e. NN0 -> ( ! ` N ) = prod_ k e. ( 1 ... N ) k ) |
|
| 11 | 6 9 10 | 3eqtr4d | |- ( N e. NN0 -> ( 1 RiseFac N ) = ( ! ` N ) ) |