This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ring isomorphism is an equivalence relation. (Contributed by Jeff Madsen, 16-Jun-2011) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | riscer | ⊢ ≃𝑟 Er dom ≃𝑟 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-risc | ⊢ ≃𝑟 = { 〈 𝑟 , 𝑠 〉 ∣ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ) } | |
| 2 | 1 | relopabiv | ⊢ Rel ≃𝑟 |
| 3 | eqid | ⊢ dom ≃𝑟 = dom ≃𝑟 | |
| 4 | vex | ⊢ 𝑟 ∈ V | |
| 5 | vex | ⊢ 𝑠 ∈ V | |
| 6 | 4 5 | isrisc | ⊢ ( 𝑟 ≃𝑟 𝑠 ↔ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ) ) |
| 7 | rngoisocnv | ⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ) → ◡ 𝑓 ∈ ( 𝑠 RingOpsIso 𝑟 ) ) | |
| 8 | 7 | 3expia | ⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) → ( 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) → ◡ 𝑓 ∈ ( 𝑠 RingOpsIso 𝑟 ) ) ) |
| 9 | risci | ⊢ ( ( 𝑠 ∈ RingOps ∧ 𝑟 ∈ RingOps ∧ ◡ 𝑓 ∈ ( 𝑠 RingOpsIso 𝑟 ) ) → 𝑠 ≃𝑟 𝑟 ) | |
| 10 | 9 | 3expia | ⊢ ( ( 𝑠 ∈ RingOps ∧ 𝑟 ∈ RingOps ) → ( ◡ 𝑓 ∈ ( 𝑠 RingOpsIso 𝑟 ) → 𝑠 ≃𝑟 𝑟 ) ) |
| 11 | 10 | ancoms | ⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) → ( ◡ 𝑓 ∈ ( 𝑠 RingOpsIso 𝑟 ) → 𝑠 ≃𝑟 𝑟 ) ) |
| 12 | 8 11 | syld | ⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) → ( 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) → 𝑠 ≃𝑟 𝑟 ) ) |
| 13 | 12 | exlimdv | ⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) → ( ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) → 𝑠 ≃𝑟 𝑟 ) ) |
| 14 | 13 | imp | ⊢ ( ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ) → 𝑠 ≃𝑟 𝑟 ) |
| 15 | 6 14 | sylbi | ⊢ ( 𝑟 ≃𝑟 𝑠 → 𝑠 ≃𝑟 𝑟 ) |
| 16 | vex | ⊢ 𝑡 ∈ V | |
| 17 | 5 16 | isrisc | ⊢ ( 𝑠 ≃𝑟 𝑡 ↔ ( ( 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps ) ∧ ∃ 𝑔 𝑔 ∈ ( 𝑠 RingOpsIso 𝑡 ) ) ) |
| 18 | exdistrv | ⊢ ( ∃ 𝑓 ∃ 𝑔 ( 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ∧ 𝑔 ∈ ( 𝑠 RingOpsIso 𝑡 ) ) ↔ ( ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ∧ ∃ 𝑔 𝑔 ∈ ( 𝑠 RingOpsIso 𝑡 ) ) ) | |
| 19 | rngoisoco | ⊢ ( ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps ) ∧ ( 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ∧ 𝑔 ∈ ( 𝑠 RingOpsIso 𝑡 ) ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑟 RingOpsIso 𝑡 ) ) | |
| 20 | 19 | ex | ⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps ) → ( ( 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ∧ 𝑔 ∈ ( 𝑠 RingOpsIso 𝑡 ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑟 RingOpsIso 𝑡 ) ) ) |
| 21 | risci | ⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑡 ∈ RingOps ∧ ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑟 RingOpsIso 𝑡 ) ) → 𝑟 ≃𝑟 𝑡 ) | |
| 22 | 21 | 3expia | ⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑡 ∈ RingOps ) → ( ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑟 RingOpsIso 𝑡 ) → 𝑟 ≃𝑟 𝑡 ) ) |
| 23 | 22 | 3adant2 | ⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps ) → ( ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑟 RingOpsIso 𝑡 ) → 𝑟 ≃𝑟 𝑡 ) ) |
| 24 | 20 23 | syld | ⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps ) → ( ( 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ∧ 𝑔 ∈ ( 𝑠 RingOpsIso 𝑡 ) ) → 𝑟 ≃𝑟 𝑡 ) ) |
| 25 | 24 | exlimdvv | ⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps ) → ( ∃ 𝑓 ∃ 𝑔 ( 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ∧ 𝑔 ∈ ( 𝑠 RingOpsIso 𝑡 ) ) → 𝑟 ≃𝑟 𝑡 ) ) |
| 26 | 18 25 | biimtrrid | ⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps ) → ( ( ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ∧ ∃ 𝑔 𝑔 ∈ ( 𝑠 RingOpsIso 𝑡 ) ) → 𝑟 ≃𝑟 𝑡 ) ) |
| 27 | 26 | 3expb | ⊢ ( ( 𝑟 ∈ RingOps ∧ ( 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps ) ) → ( ( ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ∧ ∃ 𝑔 𝑔 ∈ ( 𝑠 RingOpsIso 𝑡 ) ) → 𝑟 ≃𝑟 𝑡 ) ) |
| 28 | 27 | adantlr | ⊢ ( ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ( 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps ) ) → ( ( ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ∧ ∃ 𝑔 𝑔 ∈ ( 𝑠 RingOpsIso 𝑡 ) ) → 𝑟 ≃𝑟 𝑡 ) ) |
| 29 | 28 | imp | ⊢ ( ( ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ( 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps ) ) ∧ ( ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ∧ ∃ 𝑔 𝑔 ∈ ( 𝑠 RingOpsIso 𝑡 ) ) ) → 𝑟 ≃𝑟 𝑡 ) |
| 30 | 29 | an4s | ⊢ ( ( ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ) ∧ ( ( 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps ) ∧ ∃ 𝑔 𝑔 ∈ ( 𝑠 RingOpsIso 𝑡 ) ) ) → 𝑟 ≃𝑟 𝑡 ) |
| 31 | 6 17 30 | syl2anb | ⊢ ( ( 𝑟 ≃𝑟 𝑠 ∧ 𝑠 ≃𝑟 𝑡 ) → 𝑟 ≃𝑟 𝑡 ) |
| 32 | 15 31 | pm3.2i | ⊢ ( ( 𝑟 ≃𝑟 𝑠 → 𝑠 ≃𝑟 𝑟 ) ∧ ( ( 𝑟 ≃𝑟 𝑠 ∧ 𝑠 ≃𝑟 𝑡 ) → 𝑟 ≃𝑟 𝑡 ) ) |
| 33 | 32 | ax-gen | ⊢ ∀ 𝑡 ( ( 𝑟 ≃𝑟 𝑠 → 𝑠 ≃𝑟 𝑟 ) ∧ ( ( 𝑟 ≃𝑟 𝑠 ∧ 𝑠 ≃𝑟 𝑡 ) → 𝑟 ≃𝑟 𝑡 ) ) |
| 34 | 33 | gen2 | ⊢ ∀ 𝑟 ∀ 𝑠 ∀ 𝑡 ( ( 𝑟 ≃𝑟 𝑠 → 𝑠 ≃𝑟 𝑟 ) ∧ ( ( 𝑟 ≃𝑟 𝑠 ∧ 𝑠 ≃𝑟 𝑡 ) → 𝑟 ≃𝑟 𝑡 ) ) |
| 35 | dfer2 | ⊢ ( ≃𝑟 Er dom ≃𝑟 ↔ ( Rel ≃𝑟 ∧ dom ≃𝑟 = dom ≃𝑟 ∧ ∀ 𝑟 ∀ 𝑠 ∀ 𝑡 ( ( 𝑟 ≃𝑟 𝑠 → 𝑠 ≃𝑟 𝑟 ) ∧ ( ( 𝑟 ≃𝑟 𝑠 ∧ 𝑠 ≃𝑟 𝑡 ) → 𝑟 ≃𝑟 𝑡 ) ) ) ) | |
| 36 | 2 3 34 35 | mpbir3an | ⊢ ≃𝑟 Er dom ≃𝑟 |