This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isrisc.1 | ⊢ 𝑅 ∈ V | |
| isrisc.2 | ⊢ 𝑆 ∈ V | ||
| Assertion | isrisc | ⊢ ( 𝑅 ≃𝑟 𝑆 ↔ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑅 RingOpsIso 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrisc.1 | ⊢ 𝑅 ∈ V | |
| 2 | isrisc.2 | ⊢ 𝑆 ∈ V | |
| 3 | isriscg | ⊢ ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) → ( 𝑅 ≃𝑟 𝑆 ↔ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑅 RingOpsIso 𝑆 ) ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 𝑅 ≃𝑟 𝑆 ↔ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑅 RingOpsIso 𝑆 ) ) ) |