This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie avoids a disjointness condition on x , A by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbcie2g.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| sbcie2g.2 | ⊢ ( 𝑦 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | sbcie2g | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcie2g.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | sbcie2g.2 | ⊢ ( 𝑦 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | dfsbcq | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 4 | sbsbc | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 5 | 1 | sbievw | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
| 6 | 4 5 | bitr3i | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
| 7 | 3 2 6 | vtoclbg | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜒 ) ) |