This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of restricted iota. (Contributed by NM, 28-Feb-2013) (Revised by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | riotaclbgBAD | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotacl | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐴 ) | |
| 2 | undefnel2 | ⊢ ( 𝐴 ∈ 𝑉 → ¬ ( Undef ‘ 𝐴 ) ∈ 𝐴 ) | |
| 3 | iffalse | ⊢ ( ¬ ∃! 𝑥 ∈ 𝐴 𝜑 → if ( ∃! 𝑥 ∈ 𝐴 𝜑 , ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) , ( Undef ‘ { 𝑥 ∣ 𝑥 ∈ 𝐴 } ) ) = ( Undef ‘ { 𝑥 ∣ 𝑥 ∈ 𝐴 } ) ) | |
| 4 | ax-riotaBAD | ⊢ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = if ( ∃! 𝑥 ∈ 𝐴 𝜑 , ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) , ( Undef ‘ { 𝑥 ∣ 𝑥 ∈ 𝐴 } ) ) | |
| 5 | abid1 | ⊢ 𝐴 = { 𝑥 ∣ 𝑥 ∈ 𝐴 } | |
| 6 | 5 | fveq2i | ⊢ ( Undef ‘ 𝐴 ) = ( Undef ‘ { 𝑥 ∣ 𝑥 ∈ 𝐴 } ) |
| 7 | 3 4 6 | 3eqtr4g | ⊢ ( ¬ ∃! 𝑥 ∈ 𝐴 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( Undef ‘ 𝐴 ) ) |
| 8 | 7 | eleq1d | ⊢ ( ¬ ∃! 𝑥 ∈ 𝐴 𝜑 → ( ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐴 ↔ ( Undef ‘ 𝐴 ) ∈ 𝐴 ) ) |
| 9 | 8 | notbid | ⊢ ( ¬ ∃! 𝑥 ∈ 𝐴 𝜑 → ( ¬ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐴 ↔ ¬ ( Undef ‘ 𝐴 ) ∈ 𝐴 ) ) |
| 10 | 2 9 | syl5ibrcom | ⊢ ( 𝐴 ∈ 𝑉 → ( ¬ ∃! 𝑥 ∈ 𝐴 𝜑 → ¬ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐴 ) ) |
| 11 | 10 | con4d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐴 → ∃! 𝑥 ∈ 𝐴 𝜑 ) ) |
| 12 | 1 11 | impbid2 | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐴 ) ) |