This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A property ch holding for a representative of a single-valued class expression C ( y ) (see e.g. reusv2 ) also holds for its description binder D (in the form of property th ). (Contributed by NM, 5-Mar-2013) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | riotasv3d.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| riotasv3d.2 | ⊢ ( 𝜑 → Ⅎ 𝑦 𝜃 ) | ||
| riotasv3d.3 | ⊢ ( 𝜑 → 𝐷 = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) ) | ||
| riotasv3d.4 | ⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → ( 𝜒 ↔ 𝜃 ) ) | ||
| riotasv3d.5 | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) → 𝜒 ) ) | ||
| riotasv3d.6 | ⊢ ( 𝜑 → 𝐷 ∈ 𝐴 ) | ||
| riotasv3d.7 | ⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝐵 𝜓 ) | ||
| Assertion | riotasv3d | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotasv3d.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | riotasv3d.2 | ⊢ ( 𝜑 → Ⅎ 𝑦 𝜃 ) | |
| 3 | riotasv3d.3 | ⊢ ( 𝜑 → 𝐷 = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) ) | |
| 4 | riotasv3d.4 | ⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → ( 𝜒 ↔ 𝜃 ) ) | |
| 5 | riotasv3d.5 | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) → 𝜒 ) ) | |
| 6 | riotasv3d.6 | ⊢ ( 𝜑 → 𝐷 ∈ 𝐴 ) | |
| 7 | riotasv3d.7 | ⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝐵 𝜓 ) | |
| 8 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 9 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → ∃ 𝑦 ∈ 𝐵 𝜓 ) |
| 10 | nfv | ⊢ Ⅎ 𝑦 𝐴 ∈ V | |
| 11 | 5 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) → 𝜒 ) |
| 12 | 11 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ) → 𝜒 ) |
| 13 | 3 6 | riotasvd | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) → 𝐷 = 𝐶 ) ) |
| 14 | 13 | impr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ) → 𝐷 = 𝐶 ) |
| 15 | 14 | eqcomd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ) → 𝐶 = 𝐷 ) |
| 16 | 15 4 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ) → ( 𝜒 ↔ 𝜃 ) ) |
| 17 | 12 16 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ) → 𝜃 ) |
| 18 | 17 | exp45 | ⊢ ( 𝜑 → ( 𝐴 ∈ V → ( 𝑦 ∈ 𝐵 → ( 𝜓 → 𝜃 ) ) ) ) |
| 19 | 1 10 18 | ralrimd | ⊢ ( 𝜑 → ( 𝐴 ∈ V → ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝜃 ) ) ) |
| 20 | r19.23t | ⊢ ( Ⅎ 𝑦 𝜃 → ( ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝜃 ) ↔ ( ∃ 𝑦 ∈ 𝐵 𝜓 → 𝜃 ) ) ) | |
| 21 | 2 20 | syl | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝜃 ) ↔ ( ∃ 𝑦 ∈ 𝐵 𝜓 → 𝜃 ) ) ) |
| 22 | 19 21 | sylibd | ⊢ ( 𝜑 → ( 𝐴 ∈ V → ( ∃ 𝑦 ∈ 𝐵 𝜓 → 𝜃 ) ) ) |
| 23 | 22 | imp | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → ( ∃ 𝑦 ∈ 𝐵 𝜓 → 𝜃 ) ) |
| 24 | 9 23 | mpd | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → 𝜃 ) |
| 25 | 8 24 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → 𝜃 ) |