This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closed theorem form of r19.23 . (Contributed by NM, 4-Mar-2013) (Revised by Mario Carneiro, 8-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.23t | ⊢ ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.23t | ⊢ ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝜓 ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝜓 ) ) ) | |
| 2 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ) | |
| 3 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ) | |
| 4 | 3 | albii | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝜓 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ) |
| 5 | 2 4 | bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝜓 ) ) |
| 6 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 7 | 6 | imbi1i | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝜓 ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝜓 ) ) |
| 8 | 1 5 7 | 3bitr4g | ⊢ ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝜓 ) ) ) |