This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A property ch holding for a representative of a single-valued class expression C ( y ) (see e.g. reusv2 ) also holds for its description binder D (in the form of property th ). (Contributed by NM, 5-Mar-2013) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | riotasv3d.1 | |- F/ y ph |
|
| riotasv3d.2 | |- ( ph -> F/ y th ) |
||
| riotasv3d.3 | |- ( ph -> D = ( iota_ x e. A A. y e. B ( ps -> x = C ) ) ) |
||
| riotasv3d.4 | |- ( ( ph /\ C = D ) -> ( ch <-> th ) ) |
||
| riotasv3d.5 | |- ( ph -> ( ( y e. B /\ ps ) -> ch ) ) |
||
| riotasv3d.6 | |- ( ph -> D e. A ) |
||
| riotasv3d.7 | |- ( ph -> E. y e. B ps ) |
||
| Assertion | riotasv3d | |- ( ( ph /\ A e. V ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotasv3d.1 | |- F/ y ph |
|
| 2 | riotasv3d.2 | |- ( ph -> F/ y th ) |
|
| 3 | riotasv3d.3 | |- ( ph -> D = ( iota_ x e. A A. y e. B ( ps -> x = C ) ) ) |
|
| 4 | riotasv3d.4 | |- ( ( ph /\ C = D ) -> ( ch <-> th ) ) |
|
| 5 | riotasv3d.5 | |- ( ph -> ( ( y e. B /\ ps ) -> ch ) ) |
|
| 6 | riotasv3d.6 | |- ( ph -> D e. A ) |
|
| 7 | riotasv3d.7 | |- ( ph -> E. y e. B ps ) |
|
| 8 | elex | |- ( A e. V -> A e. _V ) |
|
| 9 | 7 | adantr | |- ( ( ph /\ A e. _V ) -> E. y e. B ps ) |
| 10 | nfv | |- F/ y A e. _V |
|
| 11 | 5 | imp | |- ( ( ph /\ ( y e. B /\ ps ) ) -> ch ) |
| 12 | 11 | adantrl | |- ( ( ph /\ ( A e. _V /\ ( y e. B /\ ps ) ) ) -> ch ) |
| 13 | 3 6 | riotasvd | |- ( ( ph /\ A e. _V ) -> ( ( y e. B /\ ps ) -> D = C ) ) |
| 14 | 13 | impr | |- ( ( ph /\ ( A e. _V /\ ( y e. B /\ ps ) ) ) -> D = C ) |
| 15 | 14 | eqcomd | |- ( ( ph /\ ( A e. _V /\ ( y e. B /\ ps ) ) ) -> C = D ) |
| 16 | 15 4 | syldan | |- ( ( ph /\ ( A e. _V /\ ( y e. B /\ ps ) ) ) -> ( ch <-> th ) ) |
| 17 | 12 16 | mpbid | |- ( ( ph /\ ( A e. _V /\ ( y e. B /\ ps ) ) ) -> th ) |
| 18 | 17 | exp45 | |- ( ph -> ( A e. _V -> ( y e. B -> ( ps -> th ) ) ) ) |
| 19 | 1 10 18 | ralrimd | |- ( ph -> ( A e. _V -> A. y e. B ( ps -> th ) ) ) |
| 20 | r19.23t | |- ( F/ y th -> ( A. y e. B ( ps -> th ) <-> ( E. y e. B ps -> th ) ) ) |
|
| 21 | 2 20 | syl | |- ( ph -> ( A. y e. B ( ps -> th ) <-> ( E. y e. B ps -> th ) ) ) |
| 22 | 19 21 | sylibd | |- ( ph -> ( A e. _V -> ( E. y e. B ps -> th ) ) ) |
| 23 | 22 | imp | |- ( ( ph /\ A e. _V ) -> ( E. y e. B ps -> th ) ) |
| 24 | 9 23 | mpd | |- ( ( ph /\ A e. _V ) -> th ) |
| 25 | 8 24 | sylan2 | |- ( ( ph /\ A e. V ) -> th ) |