This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006) (Revised by NM, 16-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | moriotass | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃* 𝑥 ∈ 𝐵 𝜑 ) → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( ℩ 𝑥 ∈ 𝐵 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrexv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐵 𝜑 ) ) | |
| 2 | 1 | imp | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ) → ∃ 𝑥 ∈ 𝐵 𝜑 ) |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃* 𝑥 ∈ 𝐵 𝜑 ) → ∃ 𝑥 ∈ 𝐵 𝜑 ) |
| 4 | simp3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃* 𝑥 ∈ 𝐵 𝜑 ) → ∃* 𝑥 ∈ 𝐵 𝜑 ) | |
| 5 | reu5 | ⊢ ( ∃! 𝑥 ∈ 𝐵 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐵 𝜑 ∧ ∃* 𝑥 ∈ 𝐵 𝜑 ) ) | |
| 6 | 3 4 5 | sylanbrc | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃* 𝑥 ∈ 𝐵 𝜑 ) → ∃! 𝑥 ∈ 𝐵 𝜑 ) |
| 7 | riotass | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜑 ) → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( ℩ 𝑥 ∈ 𝐵 𝜑 ) ) | |
| 8 | 6 7 | syld3an3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃* 𝑥 ∈ 𝐵 𝜑 ) → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( ℩ 𝑥 ∈ 𝐵 𝜑 ) ) |