This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Oct-2005) (Revised by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | riotass | |- ( ( A C_ B /\ E. x e. A ph /\ E! x e. B ph ) -> ( iota_ x e. A ph ) = ( iota_ x e. B ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuss | |- ( ( A C_ B /\ E. x e. A ph /\ E! x e. B ph ) -> E! x e. A ph ) |
|
| 2 | riotasbc | |- ( E! x e. A ph -> [. ( iota_ x e. A ph ) / x ]. ph ) |
|
| 3 | 1 2 | syl | |- ( ( A C_ B /\ E. x e. A ph /\ E! x e. B ph ) -> [. ( iota_ x e. A ph ) / x ]. ph ) |
| 4 | simp1 | |- ( ( A C_ B /\ E. x e. A ph /\ E! x e. B ph ) -> A C_ B ) |
|
| 5 | riotacl | |- ( E! x e. A ph -> ( iota_ x e. A ph ) e. A ) |
|
| 6 | 1 5 | syl | |- ( ( A C_ B /\ E. x e. A ph /\ E! x e. B ph ) -> ( iota_ x e. A ph ) e. A ) |
| 7 | 4 6 | sseldd | |- ( ( A C_ B /\ E. x e. A ph /\ E! x e. B ph ) -> ( iota_ x e. A ph ) e. B ) |
| 8 | simp3 | |- ( ( A C_ B /\ E. x e. A ph /\ E! x e. B ph ) -> E! x e. B ph ) |
|
| 9 | nfriota1 | |- F/_ x ( iota_ x e. A ph ) |
|
| 10 | 9 | nfsbc1 | |- F/ x [. ( iota_ x e. A ph ) / x ]. ph |
| 11 | sbceq1a | |- ( x = ( iota_ x e. A ph ) -> ( ph <-> [. ( iota_ x e. A ph ) / x ]. ph ) ) |
|
| 12 | 9 10 11 | riota2f | |- ( ( ( iota_ x e. A ph ) e. B /\ E! x e. B ph ) -> ( [. ( iota_ x e. A ph ) / x ]. ph <-> ( iota_ x e. B ph ) = ( iota_ x e. A ph ) ) ) |
| 13 | 7 8 12 | syl2anc | |- ( ( A C_ B /\ E. x e. A ph /\ E! x e. B ph ) -> ( [. ( iota_ x e. A ph ) / x ]. ph <-> ( iota_ x e. B ph ) = ( iota_ x e. A ph ) ) ) |
| 14 | 3 13 | mpbid | |- ( ( A C_ B /\ E. x e. A ph /\ E! x e. B ph ) -> ( iota_ x e. B ph ) = ( iota_ x e. A ph ) ) |
| 15 | 14 | eqcomd | |- ( ( A C_ B /\ E. x e. A ph /\ E! x e. B ph ) -> ( iota_ x e. A ph ) = ( iota_ x e. B ph ) ) |