This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Uniqueness of an inverse element in a monoid, if it exists. (Contributed by AV, 20-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndinvmod.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mndinvmod.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| mndinvmod.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| mndinvmod.m | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| mndinvmod.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | ||
| Assertion | mndinvmod | ⊢ ( 𝜑 → ∃* 𝑤 ∈ 𝐵 ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndinvmod.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mndinvmod.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | mndinvmod.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | mndinvmod.m | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 5 | mndinvmod.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| 6 | simpl | ⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → 𝑤 ∈ 𝐵 ) | |
| 7 | 1 3 2 | mndrid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑤 ∈ 𝐵 ) → ( 𝑤 + 0 ) = 𝑤 ) |
| 8 | 4 6 7 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ( 𝑤 + 0 ) = 𝑤 ) |
| 9 | 8 | eqcomd | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑤 = ( 𝑤 + 0 ) ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ∧ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) ) → 𝑤 = ( 𝑤 + 0 ) ) |
| 11 | oveq2 | ⊢ ( 0 = ( 𝐴 + 𝑣 ) → ( 𝑤 + 0 ) = ( 𝑤 + ( 𝐴 + 𝑣 ) ) ) | |
| 12 | 11 | eqcoms | ⊢ ( ( 𝐴 + 𝑣 ) = 0 → ( 𝑤 + 0 ) = ( 𝑤 + ( 𝐴 + 𝑣 ) ) ) |
| 13 | 12 | adantl | ⊢ ( ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) → ( 𝑤 + 0 ) = ( 𝑤 + ( 𝐴 + 𝑣 ) ) ) |
| 14 | 13 | adantl | ⊢ ( ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ∧ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) → ( 𝑤 + 0 ) = ( 𝑤 + ( 𝐴 + 𝑣 ) ) ) |
| 15 | 14 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ∧ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) ) → ( 𝑤 + 0 ) = ( 𝑤 + ( 𝐴 + 𝑣 ) ) ) |
| 16 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → 𝐺 ∈ Mnd ) |
| 17 | 6 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑤 ∈ 𝐵 ) |
| 18 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → 𝐴 ∈ 𝐵 ) |
| 19 | simpr | ⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → 𝑣 ∈ 𝐵 ) | |
| 20 | 19 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑣 ∈ 𝐵 ) |
| 21 | 1 3 | mndass | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑤 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ( ( 𝑤 + 𝐴 ) + 𝑣 ) = ( 𝑤 + ( 𝐴 + 𝑣 ) ) ) |
| 22 | 21 | eqcomd | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑤 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ( 𝑤 + ( 𝐴 + 𝑣 ) ) = ( ( 𝑤 + 𝐴 ) + 𝑣 ) ) |
| 23 | 16 17 18 20 22 | syl13anc | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ( 𝑤 + ( 𝐴 + 𝑣 ) ) = ( ( 𝑤 + 𝐴 ) + 𝑣 ) ) |
| 24 | 23 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ∧ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) ) → ( 𝑤 + ( 𝐴 + 𝑣 ) ) = ( ( 𝑤 + 𝐴 ) + 𝑣 ) ) |
| 25 | oveq1 | ⊢ ( ( 𝑤 + 𝐴 ) = 0 → ( ( 𝑤 + 𝐴 ) + 𝑣 ) = ( 0 + 𝑣 ) ) | |
| 26 | 25 | adantr | ⊢ ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) → ( ( 𝑤 + 𝐴 ) + 𝑣 ) = ( 0 + 𝑣 ) ) |
| 27 | 26 | adantr | ⊢ ( ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ∧ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) → ( ( 𝑤 + 𝐴 ) + 𝑣 ) = ( 0 + 𝑣 ) ) |
| 28 | 27 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ∧ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) ) → ( ( 𝑤 + 𝐴 ) + 𝑣 ) = ( 0 + 𝑣 ) ) |
| 29 | 1 3 2 | mndlid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑣 ∈ 𝐵 ) → ( 0 + 𝑣 ) = 𝑣 ) |
| 30 | 4 19 29 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ( 0 + 𝑣 ) = 𝑣 ) |
| 31 | 30 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ∧ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) ) → ( 0 + 𝑣 ) = 𝑣 ) |
| 32 | 24 28 31 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ∧ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) ) → ( 𝑤 + ( 𝐴 + 𝑣 ) ) = 𝑣 ) |
| 33 | 10 15 32 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ∧ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) ) → 𝑤 = 𝑣 ) |
| 34 | 33 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ( ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ∧ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) → 𝑤 = 𝑣 ) ) |
| 35 | 34 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ∧ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) → 𝑤 = 𝑣 ) ) |
| 36 | oveq1 | ⊢ ( 𝑤 = 𝑣 → ( 𝑤 + 𝐴 ) = ( 𝑣 + 𝐴 ) ) | |
| 37 | 36 | eqeq1d | ⊢ ( 𝑤 = 𝑣 → ( ( 𝑤 + 𝐴 ) = 0 ↔ ( 𝑣 + 𝐴 ) = 0 ) ) |
| 38 | oveq2 | ⊢ ( 𝑤 = 𝑣 → ( 𝐴 + 𝑤 ) = ( 𝐴 + 𝑣 ) ) | |
| 39 | 38 | eqeq1d | ⊢ ( 𝑤 = 𝑣 → ( ( 𝐴 + 𝑤 ) = 0 ↔ ( 𝐴 + 𝑣 ) = 0 ) ) |
| 40 | 37 39 | anbi12d | ⊢ ( 𝑤 = 𝑣 → ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ↔ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) ) |
| 41 | 40 | rmo4 | ⊢ ( ∃* 𝑤 ∈ 𝐵 ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ↔ ∀ 𝑤 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ∧ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) → 𝑤 = 𝑣 ) ) |
| 42 | 35 41 | sylibr | ⊢ ( 𝜑 → ∃* 𝑤 ∈ 𝐵 ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ) |