This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of gsummulc1 as of 7-Mar-2025. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 10-Jul-2019) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummulc1OLD.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| gsummulc1OLD.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| gsummulc1OLD.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| gsummulc1OLD.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| gsummulc1OLD.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| gsummulc1OLD.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsummulc1OLD.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| gsummulc1OLD.x | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | ||
| gsummulc1OLD.n | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) finSupp 0 ) | ||
| Assertion | gsummulc1OLD | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝑋 · 𝑌 ) ) ) = ( ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) · 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummulc1OLD.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | gsummulc1OLD.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | gsummulc1OLD.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 4 | gsummulc1OLD.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | gsummulc1OLD.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 6 | gsummulc1OLD.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 7 | gsummulc1OLD.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | gsummulc1OLD.x | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | |
| 9 | gsummulc1OLD.n | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) finSupp 0 ) | |
| 10 | ringcmn | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) | |
| 11 | 5 10 | syl | ⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 12 | ringmnd | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) | |
| 13 | 5 12 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 14 | 1 4 | ringrghm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑌 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) ) |
| 15 | 5 7 14 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑌 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) ) |
| 16 | ghmmhm | ⊢ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑌 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑌 ) ) ∈ ( 𝑅 MndHom 𝑅 ) ) | |
| 17 | 15 16 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑌 ) ) ∈ ( 𝑅 MndHom 𝑅 ) ) |
| 18 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 · 𝑌 ) = ( 𝑋 · 𝑌 ) ) | |
| 19 | oveq1 | ⊢ ( 𝑥 = ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) → ( 𝑥 · 𝑌 ) = ( ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) · 𝑌 ) ) | |
| 20 | 1 2 11 13 6 17 8 9 18 19 | gsummhm2 | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝑋 · 𝑌 ) ) ) = ( ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) · 𝑌 ) ) |