This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplication operation of a unital ring has (one or more) identity elements. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 22-Dec-2013) (Revised by AV, 24-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringid.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ringid.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | ringid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ∃ 𝑢 ∈ 𝐵 ( ( 𝑢 · 𝑋 ) = 𝑋 ∧ ( 𝑋 · 𝑢 ) = 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringid.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ringid.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 4 | 1 3 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 6 | oveq1 | ⊢ ( 𝑢 = ( 1r ‘ 𝑅 ) → ( 𝑢 · 𝑋 ) = ( ( 1r ‘ 𝑅 ) · 𝑋 ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( 𝑢 = ( 1r ‘ 𝑅 ) → ( ( 𝑢 · 𝑋 ) = 𝑋 ↔ ( ( 1r ‘ 𝑅 ) · 𝑋 ) = 𝑋 ) ) |
| 8 | oveq2 | ⊢ ( 𝑢 = ( 1r ‘ 𝑅 ) → ( 𝑋 · 𝑢 ) = ( 𝑋 · ( 1r ‘ 𝑅 ) ) ) | |
| 9 | 8 | eqeq1d | ⊢ ( 𝑢 = ( 1r ‘ 𝑅 ) → ( ( 𝑋 · 𝑢 ) = 𝑋 ↔ ( 𝑋 · ( 1r ‘ 𝑅 ) ) = 𝑋 ) ) |
| 10 | 7 9 | anbi12d | ⊢ ( 𝑢 = ( 1r ‘ 𝑅 ) → ( ( ( 𝑢 · 𝑋 ) = 𝑋 ∧ ( 𝑋 · 𝑢 ) = 𝑋 ) ↔ ( ( ( 1r ‘ 𝑅 ) · 𝑋 ) = 𝑋 ∧ ( 𝑋 · ( 1r ‘ 𝑅 ) ) = 𝑋 ) ) ) |
| 11 | 10 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑢 = ( 1r ‘ 𝑅 ) ) → ( ( ( 𝑢 · 𝑋 ) = 𝑋 ∧ ( 𝑋 · 𝑢 ) = 𝑋 ) ↔ ( ( ( 1r ‘ 𝑅 ) · 𝑋 ) = 𝑋 ∧ ( 𝑋 · ( 1r ‘ 𝑅 ) ) = 𝑋 ) ) ) |
| 12 | 1 2 3 | ringidmlem | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 1r ‘ 𝑅 ) · 𝑋 ) = 𝑋 ∧ ( 𝑋 · ( 1r ‘ 𝑅 ) ) = 𝑋 ) ) |
| 13 | 5 11 12 | rspcedvd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ∃ 𝑢 ∈ 𝐵 ( ( 𝑢 · 𝑋 ) = 𝑋 ∧ ( 𝑋 · 𝑢 ) = 𝑋 ) ) |