This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring element plus itself is two times the element. "Two" in an arbitrary unital ring is the sum of the unity element with itself. (Contributed by AV, 24-Aug-2021) Variant of o2timesd for rings. (Revised by AV, 5-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringo2times.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ringo2times.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| ringo2times.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| ringo2times.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | ringo2times | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 + 𝐴 ) = ( ( 1 + 1 ) · 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringo2times.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ringo2times.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 3 | ringo2times.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | ringo2times.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 5 | 1 2 3 | ringdir | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 6 | 5 | ralrimivvva | ⊢ ( 𝑅 ∈ Ring → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 8 | 1 4 | ringidcl | ⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐵 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵 ) → 1 ∈ 𝐵 ) |
| 10 | 1 3 4 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( 1 · 𝑥 ) = 𝑥 ) |
| 11 | 10 | ralrimiva | ⊢ ( 𝑅 ∈ Ring → ∀ 𝑥 ∈ 𝐵 ( 1 · 𝑥 ) = 𝑥 ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ( 1 · 𝑥 ) = 𝑥 ) |
| 13 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ 𝐵 ) | |
| 14 | 7 9 12 13 | o2timesd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 + 𝐴 ) = ( ( 1 + 1 ) · 𝐴 ) ) |