This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplication operation of a unital ring has (one or more) identity elements. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 22-Dec-2013) (Revised by AV, 24-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringid.b | |- B = ( Base ` R ) |
|
| ringid.t | |- .x. = ( .r ` R ) |
||
| Assertion | ringid | |- ( ( R e. Ring /\ X e. B ) -> E. u e. B ( ( u .x. X ) = X /\ ( X .x. u ) = X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringid.b | |- B = ( Base ` R ) |
|
| 2 | ringid.t | |- .x. = ( .r ` R ) |
|
| 3 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 4 | 1 3 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 5 | 4 | adantr | |- ( ( R e. Ring /\ X e. B ) -> ( 1r ` R ) e. B ) |
| 6 | oveq1 | |- ( u = ( 1r ` R ) -> ( u .x. X ) = ( ( 1r ` R ) .x. X ) ) |
|
| 7 | 6 | eqeq1d | |- ( u = ( 1r ` R ) -> ( ( u .x. X ) = X <-> ( ( 1r ` R ) .x. X ) = X ) ) |
| 8 | oveq2 | |- ( u = ( 1r ` R ) -> ( X .x. u ) = ( X .x. ( 1r ` R ) ) ) |
|
| 9 | 8 | eqeq1d | |- ( u = ( 1r ` R ) -> ( ( X .x. u ) = X <-> ( X .x. ( 1r ` R ) ) = X ) ) |
| 10 | 7 9 | anbi12d | |- ( u = ( 1r ` R ) -> ( ( ( u .x. X ) = X /\ ( X .x. u ) = X ) <-> ( ( ( 1r ` R ) .x. X ) = X /\ ( X .x. ( 1r ` R ) ) = X ) ) ) |
| 11 | 10 | adantl | |- ( ( ( R e. Ring /\ X e. B ) /\ u = ( 1r ` R ) ) -> ( ( ( u .x. X ) = X /\ ( X .x. u ) = X ) <-> ( ( ( 1r ` R ) .x. X ) = X /\ ( X .x. ( 1r ` R ) ) = X ) ) ) |
| 12 | 1 2 3 | ringidmlem | |- ( ( R e. Ring /\ X e. B ) -> ( ( ( 1r ` R ) .x. X ) = X /\ ( X .x. ( 1r ` R ) ) = X ) ) |
| 13 | 5 11 12 | rspcedvd | |- ( ( R e. Ring /\ X e. B ) -> E. u e. B ( ( u .x. X ) = X /\ ( X .x. u ) = X ) ) |