This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 22-Dec-2013) (Revised by AV, 24-Aug-2021) (Proof shortened by AV, 1-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringadd2.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ringadd2.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| ringadd2.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | ringadd2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐵 ( 𝑋 + 𝑋 ) = ( ( 𝑥 + 𝑥 ) · 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringadd2.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ringadd2.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 3 | ringadd2.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 5 | 1 4 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 7 | simpr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 = ( 1r ‘ 𝑅 ) ) → 𝑥 = ( 1r ‘ 𝑅 ) ) | |
| 8 | 7 7 | oveq12d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 = ( 1r ‘ 𝑅 ) ) → ( 𝑥 + 𝑥 ) = ( ( 1r ‘ 𝑅 ) + ( 1r ‘ 𝑅 ) ) ) |
| 9 | 8 | oveq1d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 = ( 1r ‘ 𝑅 ) ) → ( ( 𝑥 + 𝑥 ) · 𝑋 ) = ( ( ( 1r ‘ 𝑅 ) + ( 1r ‘ 𝑅 ) ) · 𝑋 ) ) |
| 10 | 9 | eqeq2d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 = ( 1r ‘ 𝑅 ) ) → ( ( 𝑋 + 𝑋 ) = ( ( 𝑥 + 𝑥 ) · 𝑋 ) ↔ ( 𝑋 + 𝑋 ) = ( ( ( 1r ‘ 𝑅 ) + ( 1r ‘ 𝑅 ) ) · 𝑋 ) ) ) |
| 11 | 1 2 3 4 | ringo2times | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + 𝑋 ) = ( ( ( 1r ‘ 𝑅 ) + ( 1r ‘ 𝑅 ) ) · 𝑋 ) ) |
| 12 | 6 10 11 | rspcedvd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐵 ( 𝑋 + 𝑋 ) = ( ( 𝑥 + 𝑥 ) · 𝑋 ) ) |