This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Rings
Unital rings
ringadd2
Metamath Proof Explorer
Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez , 9-Sep-2007) (Revised by Mario Carneiro , 22-Dec-2013)
(Revised by AV , 24-Aug-2021) (Proof shortened by AV , 1-Feb-2025)
Ref
Expression
Hypotheses
ringadd2.b
⊢ B = Base R
ringadd2.p
⊢ + ˙ = + R
ringadd2.t
⊢ · ˙ = ⋅ R
Assertion
ringadd2
⊢ R ∈ Ring ∧ X ∈ B → ∃ x ∈ B X + ˙ X = x + ˙ x · ˙ X
Proof
Step
Hyp
Ref
Expression
1
ringadd2.b
⊢ B = Base R
2
ringadd2.p
⊢ + ˙ = + R
3
ringadd2.t
⊢ · ˙ = ⋅ R
4
eqid
⊢ 1 R = 1 R
5
1 4
ringidcl
⊢ R ∈ Ring → 1 R ∈ B
6
5
adantr
⊢ R ∈ Ring ∧ X ∈ B → 1 R ∈ B
7
simpr
⊢ R ∈ Ring ∧ X ∈ B ∧ x = 1 R → x = 1 R
8
7 7
oveq12d
⊢ R ∈ Ring ∧ X ∈ B ∧ x = 1 R → x + ˙ x = 1 R + ˙ 1 R
9
8
oveq1d
⊢ R ∈ Ring ∧ X ∈ B ∧ x = 1 R → x + ˙ x · ˙ X = 1 R + ˙ 1 R · ˙ X
10
9
eqeq2d
⊢ R ∈ Ring ∧ X ∈ B ∧ x = 1 R → X + ˙ X = x + ˙ x · ˙ X ↔ X + ˙ X = 1 R + ˙ 1 R · ˙ X
11
1 2 3 4
ringo2times
⊢ R ∈ Ring ∧ X ∈ B → X + ˙ X = 1 R + ˙ 1 R · ˙ X
12
6 10 11
rspcedvd
⊢ R ∈ Ring ∧ X ∈ B → ∃ x ∈ B X + ˙ X = x + ˙ x · ˙ X