This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 22-Dec-2013) (Revised by AV, 24-Aug-2021) (Proof shortened by AV, 1-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringadd2.b | |- B = ( Base ` R ) |
|
| ringadd2.p | |- .+ = ( +g ` R ) |
||
| ringadd2.t | |- .x. = ( .r ` R ) |
||
| Assertion | ringadd2 | |- ( ( R e. Ring /\ X e. B ) -> E. x e. B ( X .+ X ) = ( ( x .+ x ) .x. X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringadd2.b | |- B = ( Base ` R ) |
|
| 2 | ringadd2.p | |- .+ = ( +g ` R ) |
|
| 3 | ringadd2.t | |- .x. = ( .r ` R ) |
|
| 4 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 5 | 1 4 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 6 | 5 | adantr | |- ( ( R e. Ring /\ X e. B ) -> ( 1r ` R ) e. B ) |
| 7 | simpr | |- ( ( ( R e. Ring /\ X e. B ) /\ x = ( 1r ` R ) ) -> x = ( 1r ` R ) ) |
|
| 8 | 7 7 | oveq12d | |- ( ( ( R e. Ring /\ X e. B ) /\ x = ( 1r ` R ) ) -> ( x .+ x ) = ( ( 1r ` R ) .+ ( 1r ` R ) ) ) |
| 9 | 8 | oveq1d | |- ( ( ( R e. Ring /\ X e. B ) /\ x = ( 1r ` R ) ) -> ( ( x .+ x ) .x. X ) = ( ( ( 1r ` R ) .+ ( 1r ` R ) ) .x. X ) ) |
| 10 | 9 | eqeq2d | |- ( ( ( R e. Ring /\ X e. B ) /\ x = ( 1r ` R ) ) -> ( ( X .+ X ) = ( ( x .+ x ) .x. X ) <-> ( X .+ X ) = ( ( ( 1r ` R ) .+ ( 1r ` R ) ) .x. X ) ) ) |
| 11 | 1 2 3 4 | ringo2times | |- ( ( R e. Ring /\ X e. B ) -> ( X .+ X ) = ( ( ( 1r ` R ) .+ ( 1r ` R ) ) .x. X ) ) |
| 12 | 6 10 11 | rspcedvd | |- ( ( R e. Ring /\ X e. B ) -> E. x e. B ( X .+ X ) = ( ( x .+ x ) .x. X ) ) |