This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a ring has at least two elements, its one and zero are different. (Contributed by AV, 13-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ring1ne0.b | |- B = ( Base ` R ) |
|
| ring1ne0.u | |- .1. = ( 1r ` R ) |
||
| ring1ne0.z | |- .0. = ( 0g ` R ) |
||
| Assertion | ring1ne0 | |- ( ( R e. Ring /\ 1 < ( # ` B ) ) -> .1. =/= .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ring1ne0.b | |- B = ( Base ` R ) |
|
| 2 | ring1ne0.u | |- .1. = ( 1r ` R ) |
|
| 3 | ring1ne0.z | |- .0. = ( 0g ` R ) |
|
| 4 | 1 | fvexi | |- B e. _V |
| 5 | hashgt12el | |- ( ( B e. _V /\ 1 < ( # ` B ) ) -> E. x e. B E. y e. B x =/= y ) |
|
| 6 | 4 5 | mpan | |- ( 1 < ( # ` B ) -> E. x e. B E. y e. B x =/= y ) |
| 7 | 6 | adantl | |- ( ( R e. Ring /\ 1 < ( # ` B ) ) -> E. x e. B E. y e. B x =/= y ) |
| 8 | 1 2 3 | ring1eq0 | |- ( ( R e. Ring /\ x e. B /\ y e. B ) -> ( .1. = .0. -> x = y ) ) |
| 9 | 8 | necon3d | |- ( ( R e. Ring /\ x e. B /\ y e. B ) -> ( x =/= y -> .1. =/= .0. ) ) |
| 10 | 9 | 3expib | |- ( R e. Ring -> ( ( x e. B /\ y e. B ) -> ( x =/= y -> .1. =/= .0. ) ) ) |
| 11 | 10 | adantr | |- ( ( R e. Ring /\ 1 < ( # ` B ) ) -> ( ( x e. B /\ y e. B ) -> ( x =/= y -> .1. =/= .0. ) ) ) |
| 12 | 11 | com3l | |- ( ( x e. B /\ y e. B ) -> ( x =/= y -> ( ( R e. Ring /\ 1 < ( # ` B ) ) -> .1. =/= .0. ) ) ) |
| 13 | 12 | rexlimivv | |- ( E. x e. B E. y e. B x =/= y -> ( ( R e. Ring /\ 1 < ( # ` B ) ) -> .1. =/= .0. ) ) |
| 14 | 7 13 | mpcom | |- ( ( R e. Ring /\ 1 < ( # ` B ) ) -> .1. =/= .0. ) |