This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a unital ring, a left invertible element is different from zero iff .1. =/= .0. . (Contributed by FL, 18-Apr-2010) (Revised by AV, 24-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringinvnzdiv.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ringinvnzdiv.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| ringinvnzdiv.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| ringinvnzdiv.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| ringinvnzdiv.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| ringinvnzdiv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ringinvnzdiv.a | ⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝐵 ( 𝑎 · 𝑋 ) = 1 ) | ||
| Assertion | ringinvnz1ne0 | ⊢ ( 𝜑 → ( 𝑋 ≠ 0 ↔ 1 ≠ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringinvnzdiv.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ringinvnzdiv.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | ringinvnzdiv.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | ringinvnzdiv.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | ringinvnzdiv.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 6 | ringinvnzdiv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | ringinvnzdiv.a | ⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝐵 ( 𝑎 · 𝑋 ) = 1 ) | |
| 8 | oveq2 | ⊢ ( 𝑋 = 0 → ( 𝑎 · 𝑋 ) = ( 𝑎 · 0 ) ) | |
| 9 | 1 2 4 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 · 0 ) = 0 ) |
| 10 | 5 9 | sylan | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 · 0 ) = 0 ) |
| 11 | eqeq12 | ⊢ ( ( ( 𝑎 · 𝑋 ) = 1 ∧ ( 𝑎 · 0 ) = 0 ) → ( ( 𝑎 · 𝑋 ) = ( 𝑎 · 0 ) ↔ 1 = 0 ) ) | |
| 12 | 11 | biimpd | ⊢ ( ( ( 𝑎 · 𝑋 ) = 1 ∧ ( 𝑎 · 0 ) = 0 ) → ( ( 𝑎 · 𝑋 ) = ( 𝑎 · 0 ) → 1 = 0 ) ) |
| 13 | 12 | ex | ⊢ ( ( 𝑎 · 𝑋 ) = 1 → ( ( 𝑎 · 0 ) = 0 → ( ( 𝑎 · 𝑋 ) = ( 𝑎 · 0 ) → 1 = 0 ) ) ) |
| 14 | 10 13 | mpan9 | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) → ( ( 𝑎 · 𝑋 ) = ( 𝑎 · 0 ) → 1 = 0 ) ) |
| 15 | 8 14 | syl5 | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) → ( 𝑋 = 0 → 1 = 0 ) ) |
| 16 | oveq2 | ⊢ ( 1 = 0 → ( 𝑋 · 1 ) = ( 𝑋 · 0 ) ) | |
| 17 | 1 2 3 | ringridm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · 1 ) = 𝑋 ) |
| 18 | 1 2 4 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · 0 ) = 0 ) |
| 19 | 17 18 | eqeq12d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 · 1 ) = ( 𝑋 · 0 ) ↔ 𝑋 = 0 ) ) |
| 20 | 19 | biimpd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 · 1 ) = ( 𝑋 · 0 ) → 𝑋 = 0 ) ) |
| 21 | 5 6 20 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑋 · 1 ) = ( 𝑋 · 0 ) → 𝑋 = 0 ) ) |
| 22 | 21 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) → ( ( 𝑋 · 1 ) = ( 𝑋 · 0 ) → 𝑋 = 0 ) ) |
| 23 | 16 22 | syl5 | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) → ( 1 = 0 → 𝑋 = 0 ) ) |
| 24 | 15 23 | impbid | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) → ( 𝑋 = 0 ↔ 1 = 0 ) ) |
| 25 | 24 7 | r19.29a | ⊢ ( 𝜑 → ( 𝑋 = 0 ↔ 1 = 0 ) ) |
| 26 | 25 | necon3bid | ⊢ ( 𝜑 → ( 𝑋 ≠ 0 ↔ 1 ≠ 0 ) ) |