This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each unital ring isomorphism is a non-unital ring isomorphism. (Contributed by AV, 30-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rimisrngim | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 3 | 1 2 | isrim | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) ) |
| 4 | rhmisrnghm | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ) | |
| 5 | 4 | anim1i | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) → ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) ) |
| 6 | 3 5 | sylbi | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) ) |
| 7 | rimrcl | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) ) | |
| 8 | 1 2 | isrngim2 | ⊢ ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) → ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) ) ) |
| 9 | 7 8 | syl | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) ) ) |
| 10 | 6 9 | mpbird | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) |