This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each unital ring isomorphism is a non-unital ring isomorphism. (Contributed by AV, 30-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rimisrngim | |- ( F e. ( R RingIso S ) -> F e. ( R RngIso S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 2 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 3 | 1 2 | isrim | |- ( F e. ( R RingIso S ) <-> ( F e. ( R RingHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) ) |
| 4 | rhmisrnghm | |- ( F e. ( R RingHom S ) -> F e. ( R RngHom S ) ) |
|
| 5 | 4 | anim1i | |- ( ( F e. ( R RingHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) -> ( F e. ( R RngHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) ) |
| 6 | 3 5 | sylbi | |- ( F e. ( R RingIso S ) -> ( F e. ( R RngHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) ) |
| 7 | rimrcl | |- ( F e. ( R RingIso S ) -> ( R e. _V /\ S e. _V ) ) |
|
| 8 | 1 2 | isrngim2 | |- ( ( R e. _V /\ S e. _V ) -> ( F e. ( R RngIso S ) <-> ( F e. ( R RngHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) ) ) |
| 9 | 7 8 | syl | |- ( F e. ( R RingIso S ) -> ( F e. ( R RngIso S ) <-> ( F e. ( R RngHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) ) ) |
| 10 | 6 9 | mpbird | |- ( F e. ( R RingIso S ) -> F e. ( R RngIso S ) ) |