This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism of rings is an isomorphism of their additive groups. (Contributed by AV, 24-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rimgim | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rimrhm | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) | |
| 2 | rhmghm | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
| 4 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 6 | 4 5 | rimf1o | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) |
| 7 | 4 5 | isgim | ⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) ) |
| 8 | 3 6 7 | sylanbrc | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ) |