This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism of rings is an isomorphism of their additive groups. (Contributed by AV, 24-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rimgim | |- ( F e. ( R RingIso S ) -> F e. ( R GrpIso S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rimrhm | |- ( F e. ( R RingIso S ) -> F e. ( R RingHom S ) ) |
|
| 2 | rhmghm | |- ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) |
|
| 3 | 1 2 | syl | |- ( F e. ( R RingIso S ) -> F e. ( R GrpHom S ) ) |
| 4 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 5 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 6 | 4 5 | rimf1o | |- ( F e. ( R RingIso S ) -> F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) |
| 7 | 4 5 | isgim | |- ( F e. ( R GrpIso S ) <-> ( F e. ( R GrpHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) ) |
| 8 | 3 6 7 | sylanbrc | |- ( F e. ( R RingIso S ) -> F e. ( R GrpIso S ) ) |