This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relative intersection of a nonempty family. (Contributed by Stefan O'Rear, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | riinn0 | |- ( ( A. x e. X S C_ A /\ X =/= (/) ) -> ( A i^i |^|_ x e. X S ) = |^|_ x e. X S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom | |- ( A i^i |^|_ x e. X S ) = ( |^|_ x e. X S i^i A ) |
|
| 2 | r19.2z | |- ( ( X =/= (/) /\ A. x e. X S C_ A ) -> E. x e. X S C_ A ) |
|
| 3 | 2 | ancoms | |- ( ( A. x e. X S C_ A /\ X =/= (/) ) -> E. x e. X S C_ A ) |
| 4 | iinss | |- ( E. x e. X S C_ A -> |^|_ x e. X S C_ A ) |
|
| 5 | 3 4 | syl | |- ( ( A. x e. X S C_ A /\ X =/= (/) ) -> |^|_ x e. X S C_ A ) |
| 6 | dfss2 | |- ( |^|_ x e. X S C_ A <-> ( |^|_ x e. X S i^i A ) = |^|_ x e. X S ) |
|
| 7 | 5 6 | sylib | |- ( ( A. x e. X S C_ A /\ X =/= (/) ) -> ( |^|_ x e. X S i^i A ) = |^|_ x e. X S ) |
| 8 | 1 7 | eqtrid | |- ( ( A. x e. X S C_ A /\ X =/= (/) ) -> ( A i^i |^|_ x e. X S ) = |^|_ x e. X S ) |