This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring homomorphisms between two rings. (Contributed by AV, 1-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rhmval | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) → ( 𝑅 RingHom 𝑆 ) = ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrhm2 | ⊢ RingHom = ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) → RingHom = ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) ) ) |
| 3 | oveq12 | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( 𝑟 GrpHom 𝑠 ) = ( 𝑅 GrpHom 𝑆 ) ) | |
| 4 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = ( mulGrp ‘ 𝑅 ) ) | |
| 5 | fveq2 | ⊢ ( 𝑠 = 𝑆 → ( mulGrp ‘ 𝑠 ) = ( mulGrp ‘ 𝑆 ) ) | |
| 6 | 4 5 | oveqan12d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) = ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) |
| 7 | 3 6 | ineq12d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) = ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ) |
| 8 | 7 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ) → ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) = ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ) |
| 9 | simpl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) → 𝑅 ∈ Ring ) | |
| 10 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) → 𝑆 ∈ Ring ) | |
| 11 | ovex | ⊢ ( 𝑅 GrpHom 𝑆 ) ∈ V | |
| 12 | 11 | inex1 | ⊢ ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ∈ V |
| 13 | 12 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) → ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ∈ V ) |
| 14 | 2 8 9 10 13 | ovmpod | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) → ( 𝑅 RingHom 𝑆 ) = ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ) |