This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring homomorphisms between two rings. (Contributed by AV, 1-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rhmval | |- ( ( R e. Ring /\ S e. Ring ) -> ( R RingHom S ) = ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrhm2 | |- RingHom = ( r e. Ring , s e. Ring |-> ( ( r GrpHom s ) i^i ( ( mulGrp ` r ) MndHom ( mulGrp ` s ) ) ) ) |
|
| 2 | 1 | a1i | |- ( ( R e. Ring /\ S e. Ring ) -> RingHom = ( r e. Ring , s e. Ring |-> ( ( r GrpHom s ) i^i ( ( mulGrp ` r ) MndHom ( mulGrp ` s ) ) ) ) ) |
| 3 | oveq12 | |- ( ( r = R /\ s = S ) -> ( r GrpHom s ) = ( R GrpHom S ) ) |
|
| 4 | fveq2 | |- ( r = R -> ( mulGrp ` r ) = ( mulGrp ` R ) ) |
|
| 5 | fveq2 | |- ( s = S -> ( mulGrp ` s ) = ( mulGrp ` S ) ) |
|
| 6 | 4 5 | oveqan12d | |- ( ( r = R /\ s = S ) -> ( ( mulGrp ` r ) MndHom ( mulGrp ` s ) ) = ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) |
| 7 | 3 6 | ineq12d | |- ( ( r = R /\ s = S ) -> ( ( r GrpHom s ) i^i ( ( mulGrp ` r ) MndHom ( mulGrp ` s ) ) ) = ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) |
| 8 | 7 | adantl | |- ( ( ( R e. Ring /\ S e. Ring ) /\ ( r = R /\ s = S ) ) -> ( ( r GrpHom s ) i^i ( ( mulGrp ` r ) MndHom ( mulGrp ` s ) ) ) = ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) |
| 9 | simpl | |- ( ( R e. Ring /\ S e. Ring ) -> R e. Ring ) |
|
| 10 | simpr | |- ( ( R e. Ring /\ S e. Ring ) -> S e. Ring ) |
|
| 11 | ovex | |- ( R GrpHom S ) e. _V |
|
| 12 | 11 | inex1 | |- ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) e. _V |
| 13 | 12 | a1i | |- ( ( R e. Ring /\ S e. Ring ) -> ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) e. _V ) |
| 14 | 2 8 9 10 13 | ovmpod | |- ( ( R e. Ring /\ S e. Ring ) -> ( R RingHom S ) = ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) |