This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted existential uniqueness over a singleton is equivalent to a restricted existential quantification over a singleton. (Contributed by AV, 3-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexreusng | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ↔ ∃! 𝑥 ∈ { 𝐴 } 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd | ⊢ ( ( [ 𝐴 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → 𝐴 = 𝐴 ) | |
| 2 | nfsbc1v | ⊢ Ⅎ 𝑦 [ 𝐴 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 | |
| 3 | nfv | ⊢ Ⅎ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 | |
| 4 | 2 3 | nfan | ⊢ Ⅎ 𝑦 ( [ 𝐴 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) |
| 5 | nfv | ⊢ Ⅎ 𝑦 𝐴 = 𝐴 | |
| 6 | 4 5 | nfim | ⊢ Ⅎ 𝑦 ( ( [ 𝐴 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → 𝐴 = 𝐴 ) |
| 7 | sbceq1a | ⊢ ( 𝑦 = 𝐴 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 8 | dfsbcq2 | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 9 | 7 8 | anbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( [ 𝐴 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 10 | eqeq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝐴 = 𝑦 ↔ 𝐴 = 𝐴 ) ) | |
| 11 | 9 10 | imbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝐴 = 𝑦 ) ↔ ( ( [ 𝐴 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → 𝐴 = 𝐴 ) ) ) |
| 12 | 6 11 | ralsngf | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑦 ∈ { 𝐴 } ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝐴 = 𝑦 ) ↔ ( ( [ 𝐴 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → 𝐴 = 𝐴 ) ) ) |
| 13 | 1 12 | mpbiri | ⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑦 ∈ { 𝐴 } ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝐴 = 𝑦 ) ) |
| 14 | nfcv | ⊢ Ⅎ 𝑥 { 𝐴 } | |
| 15 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝐴 / 𝑥 ] 𝜑 | |
| 16 | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 | |
| 17 | 15 16 | nfan | ⊢ Ⅎ 𝑥 ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) |
| 18 | nfv | ⊢ Ⅎ 𝑥 𝐴 = 𝑦 | |
| 19 | 17 18 | nfim | ⊢ Ⅎ 𝑥 ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝐴 = 𝑦 ) |
| 20 | 14 19 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ { 𝐴 } ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝐴 = 𝑦 ) |
| 21 | sbceq1a | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 22 | 21 | anbi1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 23 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝐴 = 𝑦 ) ) | |
| 24 | 22 23 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝐴 = 𝑦 ) ) ) |
| 25 | 24 | ralbidv | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ { 𝐴 } ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ { 𝐴 } ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝐴 = 𝑦 ) ) ) |
| 26 | 20 25 | ralsngf | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐴 } ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ { 𝐴 } ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝐴 = 𝑦 ) ) ) |
| 27 | 13 26 | mpbird | ⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐴 } ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 28 | 27 | biantrud | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ↔ ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ∧ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐴 } ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) ) |
| 29 | reu2 | ⊢ ( ∃! 𝑥 ∈ { 𝐴 } 𝜑 ↔ ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ∧ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐴 } ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) | |
| 30 | 28 29 | bitr4di | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ↔ ∃! 𝑥 ∈ { 𝐴 } 𝜑 ) ) |