This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted existential uniqueness over a singleton is equivalent to a restricted existential quantification over a singleton. (Contributed by AV, 3-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexreusng | |- ( A e. V -> ( E. x e. { A } ph <-> E! x e. { A } ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd | |- ( ( [. A / y ]. [. A / x ]. ph /\ [. A / x ]. ph ) -> A = A ) |
|
| 2 | nfsbc1v | |- F/ y [. A / y ]. [. A / x ]. ph |
|
| 3 | nfv | |- F/ y [. A / x ]. ph |
|
| 4 | 2 3 | nfan | |- F/ y ( [. A / y ]. [. A / x ]. ph /\ [. A / x ]. ph ) |
| 5 | nfv | |- F/ y A = A |
|
| 6 | 4 5 | nfim | |- F/ y ( ( [. A / y ]. [. A / x ]. ph /\ [. A / x ]. ph ) -> A = A ) |
| 7 | sbceq1a | |- ( y = A -> ( [. A / x ]. ph <-> [. A / y ]. [. A / x ]. ph ) ) |
|
| 8 | dfsbcq2 | |- ( y = A -> ( [ y / x ] ph <-> [. A / x ]. ph ) ) |
|
| 9 | 7 8 | anbi12d | |- ( y = A -> ( ( [. A / x ]. ph /\ [ y / x ] ph ) <-> ( [. A / y ]. [. A / x ]. ph /\ [. A / x ]. ph ) ) ) |
| 10 | eqeq2 | |- ( y = A -> ( A = y <-> A = A ) ) |
|
| 11 | 9 10 | imbi12d | |- ( y = A -> ( ( ( [. A / x ]. ph /\ [ y / x ] ph ) -> A = y ) <-> ( ( [. A / y ]. [. A / x ]. ph /\ [. A / x ]. ph ) -> A = A ) ) ) |
| 12 | 6 11 | ralsngf | |- ( A e. V -> ( A. y e. { A } ( ( [. A / x ]. ph /\ [ y / x ] ph ) -> A = y ) <-> ( ( [. A / y ]. [. A / x ]. ph /\ [. A / x ]. ph ) -> A = A ) ) ) |
| 13 | 1 12 | mpbiri | |- ( A e. V -> A. y e. { A } ( ( [. A / x ]. ph /\ [ y / x ] ph ) -> A = y ) ) |
| 14 | nfcv | |- F/_ x { A } |
|
| 15 | nfsbc1v | |- F/ x [. A / x ]. ph |
|
| 16 | nfs1v | |- F/ x [ y / x ] ph |
|
| 17 | 15 16 | nfan | |- F/ x ( [. A / x ]. ph /\ [ y / x ] ph ) |
| 18 | nfv | |- F/ x A = y |
|
| 19 | 17 18 | nfim | |- F/ x ( ( [. A / x ]. ph /\ [ y / x ] ph ) -> A = y ) |
| 20 | 14 19 | nfralw | |- F/ x A. y e. { A } ( ( [. A / x ]. ph /\ [ y / x ] ph ) -> A = y ) |
| 21 | sbceq1a | |- ( x = A -> ( ph <-> [. A / x ]. ph ) ) |
|
| 22 | 21 | anbi1d | |- ( x = A -> ( ( ph /\ [ y / x ] ph ) <-> ( [. A / x ]. ph /\ [ y / x ] ph ) ) ) |
| 23 | eqeq1 | |- ( x = A -> ( x = y <-> A = y ) ) |
|
| 24 | 22 23 | imbi12d | |- ( x = A -> ( ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> ( ( [. A / x ]. ph /\ [ y / x ] ph ) -> A = y ) ) ) |
| 25 | 24 | ralbidv | |- ( x = A -> ( A. y e. { A } ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> A. y e. { A } ( ( [. A / x ]. ph /\ [ y / x ] ph ) -> A = y ) ) ) |
| 26 | 20 25 | ralsngf | |- ( A e. V -> ( A. x e. { A } A. y e. { A } ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> A. y e. { A } ( ( [. A / x ]. ph /\ [ y / x ] ph ) -> A = y ) ) ) |
| 27 | 13 26 | mpbird | |- ( A e. V -> A. x e. { A } A. y e. { A } ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
| 28 | 27 | biantrud | |- ( A e. V -> ( E. x e. { A } ph <-> ( E. x e. { A } ph /\ A. x e. { A } A. y e. { A } ( ( ph /\ [ y / x ] ph ) -> x = y ) ) ) ) |
| 29 | reu2 | |- ( E! x e. { A } ph <-> ( E. x e. { A } ph /\ A. x e. { A } A. y e. { A } ( ( ph /\ [ y / x ] ph ) -> x = y ) ) ) |
|
| 30 | 28 29 | bitr4di | |- ( A e. V -> ( E. x e. { A } ph <-> E! x e. { A } ph ) ) |