This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Cf. reuxfr1ds . (Contributed by Thierry Arnoux, 7-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reuxfr1d.1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) | |
| reuxfr1d.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) | ||
| reuxfr1d.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | reuxfr1d | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 𝜓 ↔ ∃! 𝑦 ∈ 𝐶 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuxfr1d.1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) | |
| 2 | reuxfr1d.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) | |
| 3 | reuxfr1d.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | reurex | ⊢ ( ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 → ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) | |
| 5 | 2 4 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
| 6 | 5 | biantrurd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝜓 ↔ ( ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 7 | r19.41v | ⊢ ( ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ( ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓 ) ) | |
| 8 | 3 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) |
| 9 | 8 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) |
| 10 | 7 9 | bitr3id | ⊢ ( 𝜑 → ( ( ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) |
| 12 | 6 11 | bitrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝜓 ↔ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) |
| 13 | 12 | reubidva | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 𝜓 ↔ ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) |
| 14 | reurmo | ⊢ ( ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 → ∃* 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) | |
| 15 | 2 14 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃* 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
| 16 | 1 15 | reuxfrd | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜒 ) ↔ ∃! 𝑦 ∈ 𝐶 𝜒 ) ) |
| 17 | 13 16 | bitrd | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 𝜓 ↔ ∃! 𝑦 ∈ 𝐶 𝜒 ) ) |