This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . (Contributed by NM, 16-Jan-2012) Separate variables B and C . (Revised by Thierry Arnoux, 8-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reuxfrd.1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) | |
| reuxfrd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃* 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) | ||
| Assertion | reuxfrd | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 ∈ 𝐶 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuxfrd.1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) | |
| 2 | reuxfrd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃* 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) | |
| 3 | rmoan | ⊢ ( ∃* 𝑦 ∈ 𝐶 𝑥 = 𝐴 → ∃* 𝑦 ∈ 𝐶 ( 𝜓 ∧ 𝑥 = 𝐴 ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃* 𝑦 ∈ 𝐶 ( 𝜓 ∧ 𝑥 = 𝐴 ) ) |
| 5 | ancom | ⊢ ( ( 𝜓 ∧ 𝑥 = 𝐴 ) ↔ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) | |
| 6 | 5 | rmobii | ⊢ ( ∃* 𝑦 ∈ 𝐶 ( 𝜓 ∧ 𝑥 = 𝐴 ) ↔ ∃* 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
| 7 | 4 6 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃* 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
| 8 | 7 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
| 9 | 2reuswap | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 11 | 2reuswap2 | ⊢ ( ∀ 𝑦 ∈ 𝐶 ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) → ( ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) | |
| 12 | moeq | ⊢ ∃* 𝑥 𝑥 = 𝐴 | |
| 13 | 12 | moani | ⊢ ∃* 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ∧ 𝑥 = 𝐴 ) |
| 14 | ancom | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ∧ 𝑥 = 𝐴 ) ↔ ( 𝑥 = 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ) | |
| 15 | an12 | ⊢ ( ( 𝑥 = 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) | |
| 16 | 14 15 | bitri | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ∧ 𝑥 = 𝐴 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 17 | 16 | mobii | ⊢ ( ∃* 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ∧ 𝑥 = 𝐴 ) ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 18 | 13 17 | mpbi | ⊢ ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
| 19 | 18 | a1i | ⊢ ( 𝑦 ∈ 𝐶 → ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 20 | 11 19 | mprg | ⊢ ( ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
| 21 | 10 20 | impbid1 | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 22 | biidd | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜓 ) ) | |
| 23 | 22 | ceqsrexv | ⊢ ( 𝐴 ∈ 𝐵 → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ 𝜓 ) ) |
| 24 | 1 23 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ 𝜓 ) ) |
| 25 | 24 | reubidva | ⊢ ( 𝜑 → ( ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 ∈ 𝐶 𝜓 ) ) |
| 26 | 21 25 | bitrd | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 ∈ 𝐶 𝜓 ) ) |