This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for reusv2 . (Contributed by NM, 22-Oct-2010) (Proof shortened by Mario Carneiro, 19-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reusv2lem1 | ⊢ ( 𝐴 ≠ ∅ → ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃ 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐴 ) | |
| 2 | nfra1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 | |
| 3 | 2 | nfmov | ⊢ Ⅎ 𝑦 ∃* 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 |
| 4 | rsp | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ( 𝑦 ∈ 𝐴 → 𝑥 = 𝐵 ) ) | |
| 5 | 4 | com12 | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝑥 = 𝐵 ) ) |
| 6 | 5 | alrimiv | ⊢ ( 𝑦 ∈ 𝐴 → ∀ 𝑥 ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝑥 = 𝐵 ) ) |
| 7 | mo2icl | ⊢ ( ∀ 𝑥 ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝑥 = 𝐵 ) → ∃* 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) | |
| 8 | 6 7 | syl | ⊢ ( 𝑦 ∈ 𝐴 → ∃* 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
| 9 | 3 8 | exlimi | ⊢ ( ∃ 𝑦 𝑦 ∈ 𝐴 → ∃* 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
| 10 | 1 9 | sylbi | ⊢ ( 𝐴 ≠ ∅ → ∃* 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
| 11 | df-eu | ⊢ ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ( ∃ 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ∧ ∃* 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) | |
| 12 | 11 | rbaib | ⊢ ( ∃* 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃ 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 13 | 10 12 | syl | ⊢ ( 𝐴 ≠ ∅ → ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃ 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |