This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for reusv2 . (Contributed by NM, 22-Oct-2010) (Proof shortened by Mario Carneiro, 19-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reusv2lem1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | ||
| 2 | nfra1 | ||
| 3 | 2 | nfmov | |
| 4 | rsp | ||
| 5 | 4 | com12 | |
| 6 | 5 | alrimiv | |
| 7 | mo2icl | ||
| 8 | 6 7 | syl | |
| 9 | 3 8 | exlimi | |
| 10 | 1 9 | sylbi | |
| 11 | df-eu | ||
| 12 | 11 | rbaib | |
| 13 | 10 12 | syl |