This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for reusv2 . (Contributed by NM, 22-Oct-2010) (Proof shortened by Mario Carneiro, 19-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reusv2lem1 | |- ( A =/= (/) -> ( E! x A. y e. A x = B <-> E. x A. y e. A x = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | |- ( A =/= (/) <-> E. y y e. A ) |
|
| 2 | nfra1 | |- F/ y A. y e. A x = B |
|
| 3 | 2 | nfmov | |- F/ y E* x A. y e. A x = B |
| 4 | rsp | |- ( A. y e. A x = B -> ( y e. A -> x = B ) ) |
|
| 5 | 4 | com12 | |- ( y e. A -> ( A. y e. A x = B -> x = B ) ) |
| 6 | 5 | alrimiv | |- ( y e. A -> A. x ( A. y e. A x = B -> x = B ) ) |
| 7 | mo2icl | |- ( A. x ( A. y e. A x = B -> x = B ) -> E* x A. y e. A x = B ) |
|
| 8 | 6 7 | syl | |- ( y e. A -> E* x A. y e. A x = B ) |
| 9 | 3 8 | exlimi | |- ( E. y y e. A -> E* x A. y e. A x = B ) |
| 10 | 1 9 | sylbi | |- ( A =/= (/) -> E* x A. y e. A x = B ) |
| 11 | df-eu | |- ( E! x A. y e. A x = B <-> ( E. x A. y e. A x = B /\ E* x A. y e. A x = B ) ) |
|
| 12 | 11 | rbaib | |- ( E* x A. y e. A x = B -> ( E! x A. y e. A x = B <-> E. x A. y e. A x = B ) ) |
| 13 | 10 12 | syl | |- ( A =/= (/) -> ( E! x A. y e. A x = B <-> E. x A. y e. A x = B ) ) |