This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express single-valuedness of a class expression C ( y ) . (Contributed by NM, 16-Dec-2012) (Proof shortened by Mario Carneiro, 18-Nov-2016) (Proof shortened by JJ, 7-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reusv1 | |- ( E. y e. B ph -> ( E! x e. A A. y e. B ( ph -> x = C ) <-> E. x e. A A. y e. B ( ph -> x = C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfra1 | |- F/ y A. y e. B ( ph -> x = C ) |
|
| 2 | 1 | nfmov | |- F/ y E* x A. y e. B ( ph -> x = C ) |
| 3 | rsp | |- ( A. y e. B ( ph -> x = C ) -> ( y e. B -> ( ph -> x = C ) ) ) |
|
| 4 | 3 | com3l | |- ( y e. B -> ( ph -> ( A. y e. B ( ph -> x = C ) -> x = C ) ) ) |
| 5 | 4 | alrimdv | |- ( y e. B -> ( ph -> A. x ( A. y e. B ( ph -> x = C ) -> x = C ) ) ) |
| 6 | mo2icl | |- ( A. x ( A. y e. B ( ph -> x = C ) -> x = C ) -> E* x A. y e. B ( ph -> x = C ) ) |
|
| 7 | 5 6 | syl6 | |- ( y e. B -> ( ph -> E* x A. y e. B ( ph -> x = C ) ) ) |
| 8 | 2 7 | rexlimi | |- ( E. y e. B ph -> E* x A. y e. B ( ph -> x = C ) ) |
| 9 | mormo | |- ( E* x A. y e. B ( ph -> x = C ) -> E* x e. A A. y e. B ( ph -> x = C ) ) |
|
| 10 | reu5 | |- ( E! x e. A A. y e. B ( ph -> x = C ) <-> ( E. x e. A A. y e. B ( ph -> x = C ) /\ E* x e. A A. y e. B ( ph -> x = C ) ) ) |
|
| 11 | 10 | rbaib | |- ( E* x e. A A. y e. B ( ph -> x = C ) -> ( E! x e. A A. y e. B ( ph -> x = C ) <-> E. x e. A A. y e. B ( ph -> x = C ) ) ) |
| 12 | 8 9 11 | 3syl | |- ( E. y e. B ph -> ( E! x e. A A. y e. B ( ph -> x = C ) <-> E. x e. A A. y e. B ( ph -> x = C ) ) ) |