This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert a restricted existential uniqueness over a pair to a restricted existential quantification and an implication . (Contributed by AV, 3-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reuprg.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| reuprg.2 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | ||
| Assertion | reurexprg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃! 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ∧ ( ( 𝜒 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuprg.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | reuprg.2 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | 1 2 | reuprg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃! 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( ( 𝜓 ∨ 𝜒 ) ∧ ( ( 𝜒 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ) ) ) |
| 4 | 1 2 | rexprg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓 ∨ 𝜒 ) ) ) |
| 5 | 4 | bicomd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝜓 ∨ 𝜒 ) ↔ ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ) ) |
| 6 | 5 | anbi1d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ( 𝜓 ∨ 𝜒 ) ∧ ( ( 𝜒 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ) ↔ ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ∧ ( ( 𝜒 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ) ) ) |
| 7 | 3 6 | bitrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃! 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ∧ ( ( 𝜒 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ) ) ) |