This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert a restricted existential uniqueness over a pair to a restricted existential quantification and an implication . (Contributed by AV, 3-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reuprg.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| reuprg.2 | |- ( x = B -> ( ph <-> ch ) ) |
||
| Assertion | reurexprg | |- ( ( A e. V /\ B e. W ) -> ( E! x e. { A , B } ph <-> ( E. x e. { A , B } ph /\ ( ( ch /\ ps ) -> A = B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuprg.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | reuprg.2 | |- ( x = B -> ( ph <-> ch ) ) |
|
| 3 | 1 2 | reuprg | |- ( ( A e. V /\ B e. W ) -> ( E! x e. { A , B } ph <-> ( ( ps \/ ch ) /\ ( ( ch /\ ps ) -> A = B ) ) ) ) |
| 4 | 1 2 | rexprg | |- ( ( A e. V /\ B e. W ) -> ( E. x e. { A , B } ph <-> ( ps \/ ch ) ) ) |
| 5 | 4 | bicomd | |- ( ( A e. V /\ B e. W ) -> ( ( ps \/ ch ) <-> E. x e. { A , B } ph ) ) |
| 6 | 5 | anbi1d | |- ( ( A e. V /\ B e. W ) -> ( ( ( ps \/ ch ) /\ ( ( ch /\ ps ) -> A = B ) ) <-> ( E. x e. { A , B } ph /\ ( ( ch /\ ps ) -> A = B ) ) ) ) |
| 7 | 3 6 | bitrd | |- ( ( A e. V /\ B e. W ) -> ( E! x e. { A , B } ph <-> ( E. x e. { A , B } ph /\ ( ( ch /\ ps ) -> A = B ) ) ) ) |