This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert a restricted existential uniqueness over a pair to a disjunction and an implication . (Contributed by AV, 2-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reuprg.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| reuprg.2 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | ||
| Assertion | reuprg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃! 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( ( 𝜓 ∨ 𝜒 ) ∧ ( ( 𝜒 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuprg.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | reuprg.2 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | 1 2 | reuprg0 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃! 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( ( 𝜓 ∧ ( 𝜒 → 𝐴 = 𝐵 ) ) ∨ ( 𝜒 ∧ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ) ) |
| 4 | orddi | ⊢ ( ( ( 𝜓 ∧ ( 𝜒 → 𝐴 = 𝐵 ) ) ∨ ( 𝜒 ∧ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ↔ ( ( ( 𝜓 ∨ 𝜒 ) ∧ ( 𝜓 ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ∧ ( ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ 𝜒 ) ∧ ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ) ) | |
| 5 | curryax | ⊢ ( 𝜓 ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) | |
| 6 | 5 | biantru | ⊢ ( ( 𝜓 ∨ 𝜒 ) ↔ ( ( 𝜓 ∨ 𝜒 ) ∧ ( 𝜓 ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ) |
| 7 | 6 | bicomi | ⊢ ( ( ( 𝜓 ∨ 𝜒 ) ∧ ( 𝜓 ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ↔ ( 𝜓 ∨ 𝜒 ) ) |
| 8 | curryax | ⊢ ( 𝜒 ∨ ( 𝜒 → 𝐴 = 𝐵 ) ) | |
| 9 | orcom | ⊢ ( ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ 𝜒 ) ↔ ( 𝜒 ∨ ( 𝜒 → 𝐴 = 𝐵 ) ) ) | |
| 10 | 8 9 | mpbir | ⊢ ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ 𝜒 ) |
| 11 | 10 | biantrur | ⊢ ( ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) ↔ ( ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ 𝜒 ) ∧ ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ) |
| 12 | 11 | bicomi | ⊢ ( ( ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ 𝜒 ) ∧ ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ↔ ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) ) |
| 13 | pm4.79 | ⊢ ( ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) ↔ ( ( 𝜒 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ) | |
| 14 | 12 13 | bitri | ⊢ ( ( ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ 𝜒 ) ∧ ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ↔ ( ( 𝜒 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ) |
| 15 | 7 14 | anbi12i | ⊢ ( ( ( ( 𝜓 ∨ 𝜒 ) ∧ ( 𝜓 ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ∧ ( ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ 𝜒 ) ∧ ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ) ↔ ( ( 𝜓 ∨ 𝜒 ) ∧ ( ( 𝜒 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ) ) |
| 16 | 4 15 | bitri | ⊢ ( ( ( 𝜓 ∧ ( 𝜒 → 𝐴 = 𝐵 ) ) ∨ ( 𝜒 ∧ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ↔ ( ( 𝜓 ∨ 𝜒 ) ∧ ( ( 𝜒 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ) ) |
| 17 | 3 16 | bitrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃! 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( ( 𝜓 ∨ 𝜒 ) ∧ ( ( 𝜒 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ) ) ) |