This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
reurexprg
Metamath Proof Explorer
Description: Convert a restricted existential uniqueness over a pair to a restricted
existential quantification and an implication . (Contributed by AV , 3-Apr-2023)
Ref
Expression
Hypotheses
reuprg.1
⊢ x = A → φ ↔ ψ
reuprg.2
⊢ x = B → φ ↔ χ
Assertion
reurexprg
⊢ A ∈ V ∧ B ∈ W → ∃! x ∈ A B φ ↔ ∃ x ∈ A B φ ∧ χ ∧ ψ → A = B
Proof
Step
Hyp
Ref
Expression
1
reuprg.1
⊢ x = A → φ ↔ ψ
2
reuprg.2
⊢ x = B → φ ↔ χ
3
1 2
reuprg
⊢ A ∈ V ∧ B ∈ W → ∃! x ∈ A B φ ↔ ψ ∨ χ ∧ χ ∧ ψ → A = B
4
1 2
rexprg
⊢ A ∈ V ∧ B ∈ W → ∃ x ∈ A B φ ↔ ψ ∨ χ
5
4
bicomd
⊢ A ∈ V ∧ B ∈ W → ψ ∨ χ ↔ ∃ x ∈ A B φ
6
5
anbi1d
⊢ A ∈ V ∧ B ∈ W → ψ ∨ χ ∧ χ ∧ ψ → A = B ↔ ∃ x ∈ A B φ ∧ χ ∧ ψ → A = B
7
3 6
bitrd
⊢ A ∈ V ∧ B ∈ W → ∃! x ∈ A B φ ↔ ∃ x ∈ A B φ ∧ χ ∧ ψ → A = B