This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert a restricted existential uniqueness over a pair to a disjunction of conjunctions. (Contributed by AV, 2-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reuprg.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| reuprg.2 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | ||
| Assertion | reuprg0 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃! 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( ( 𝜓 ∧ ( 𝜒 → 𝐴 = 𝐵 ) ) ∨ ( 𝜒 ∧ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuprg.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | reuprg.2 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑐 / 𝑥 ] 𝜑 | |
| 4 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑤 / 𝑥 ] 𝜑 | |
| 5 | sbceq1a | ⊢ ( 𝑥 = 𝑤 → ( 𝜑 ↔ [ 𝑤 / 𝑥 ] 𝜑 ) ) | |
| 6 | dfsbcq | ⊢ ( 𝑤 = 𝑐 → ( [ 𝑤 / 𝑥 ] 𝜑 ↔ [ 𝑐 / 𝑥 ] 𝜑 ) ) | |
| 7 | 3 4 5 6 | reu8nf | ⊢ ( ∃! 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ∃ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝜑 ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝑥 = 𝑐 ) ) ) |
| 8 | nfv | ⊢ Ⅎ 𝑥 𝜓 | |
| 9 | nfcv | ⊢ Ⅎ 𝑥 { 𝐴 , 𝐵 } | |
| 10 | nfv | ⊢ Ⅎ 𝑥 𝐴 = 𝑐 | |
| 11 | 3 10 | nfim | ⊢ Ⅎ 𝑥 ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) |
| 12 | 9 11 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) |
| 13 | 8 12 | nfan | ⊢ Ⅎ 𝑥 ( 𝜓 ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ) |
| 14 | nfv | ⊢ Ⅎ 𝑥 𝜒 | |
| 15 | nfv | ⊢ Ⅎ 𝑥 𝐵 = 𝑐 | |
| 16 | 3 15 | nfim | ⊢ Ⅎ 𝑥 ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐵 = 𝑐 ) |
| 17 | 9 16 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐵 = 𝑐 ) |
| 18 | 14 17 | nfan | ⊢ Ⅎ 𝑥 ( 𝜒 ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐵 = 𝑐 ) ) |
| 19 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝑐 ↔ 𝐴 = 𝑐 ) ) | |
| 20 | 19 | imbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( [ 𝑐 / 𝑥 ] 𝜑 → 𝑥 = 𝑐 ) ↔ ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ) ) |
| 21 | 20 | ralbidv | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝑥 = 𝑐 ) ↔ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ) ) |
| 22 | 1 21 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝑥 = 𝑐 ) ) ↔ ( 𝜓 ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ) ) ) |
| 23 | eqeq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 = 𝑐 ↔ 𝐵 = 𝑐 ) ) | |
| 24 | 23 | imbi2d | ⊢ ( 𝑥 = 𝐵 → ( ( [ 𝑐 / 𝑥 ] 𝜑 → 𝑥 = 𝑐 ) ↔ ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐵 = 𝑐 ) ) ) |
| 25 | 24 | ralbidv | ⊢ ( 𝑥 = 𝐵 → ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝑥 = 𝑐 ) ↔ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐵 = 𝑐 ) ) ) |
| 26 | 2 25 | anbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝜑 ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝑥 = 𝑐 ) ) ↔ ( 𝜒 ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐵 = 𝑐 ) ) ) ) |
| 27 | 13 18 22 26 | rexprgf | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝜑 ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝑥 = 𝑐 ) ) ↔ ( ( 𝜓 ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ) ∨ ( 𝜒 ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐵 = 𝑐 ) ) ) ) ) |
| 28 | dfsbcq | ⊢ ( 𝑐 = 𝐴 → ( [ 𝑐 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 29 | eqeq2 | ⊢ ( 𝑐 = 𝐴 → ( 𝐴 = 𝑐 ↔ 𝐴 = 𝐴 ) ) | |
| 30 | 28 29 | imbi12d | ⊢ ( 𝑐 = 𝐴 → ( ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 = 𝐴 ) ) ) |
| 31 | dfsbcq | ⊢ ( 𝑐 = 𝐵 → ( [ 𝑐 / 𝑥 ] 𝜑 ↔ [ 𝐵 / 𝑥 ] 𝜑 ) ) | |
| 32 | eqeq2 | ⊢ ( 𝑐 = 𝐵 → ( 𝐴 = 𝑐 ↔ 𝐴 = 𝐵 ) ) | |
| 33 | 31 32 | imbi12d | ⊢ ( 𝑐 = 𝐵 → ( ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ↔ ( [ 𝐵 / 𝑥 ] 𝜑 → 𝐴 = 𝐵 ) ) ) |
| 34 | 30 33 | ralprg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 = 𝐴 ) ∧ ( [ 𝐵 / 𝑥 ] 𝜑 → 𝐴 = 𝐵 ) ) ) ) |
| 35 | eqidd | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 = 𝐴 ) | |
| 36 | 35 | biantrur | ⊢ ( ( [ 𝐵 / 𝑥 ] 𝜑 → 𝐴 = 𝐵 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 = 𝐴 ) ∧ ( [ 𝐵 / 𝑥 ] 𝜑 → 𝐴 = 𝐵 ) ) ) |
| 37 | 2 | sbcieg | ⊢ ( 𝐵 ∈ 𝑊 → ( [ 𝐵 / 𝑥 ] 𝜑 ↔ 𝜒 ) ) |
| 38 | 37 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐵 / 𝑥 ] 𝜑 ↔ 𝜒 ) ) |
| 39 | 38 | imbi1d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐵 / 𝑥 ] 𝜑 → 𝐴 = 𝐵 ) ↔ ( 𝜒 → 𝐴 = 𝐵 ) ) ) |
| 40 | 36 39 | bitr3id | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 = 𝐴 ) ∧ ( [ 𝐵 / 𝑥 ] 𝜑 → 𝐴 = 𝐵 ) ) ↔ ( 𝜒 → 𝐴 = 𝐵 ) ) ) |
| 41 | 34 40 | bitrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ↔ ( 𝜒 → 𝐴 = 𝐵 ) ) ) |
| 42 | 41 | anbi2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝜓 ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ) ↔ ( 𝜓 ∧ ( 𝜒 → 𝐴 = 𝐵 ) ) ) ) |
| 43 | eqeq2 | ⊢ ( 𝑐 = 𝐴 → ( 𝐵 = 𝑐 ↔ 𝐵 = 𝐴 ) ) | |
| 44 | 28 43 | imbi12d | ⊢ ( 𝑐 = 𝐴 → ( ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐵 = 𝑐 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐵 = 𝐴 ) ) ) |
| 45 | eqeq2 | ⊢ ( 𝑐 = 𝐵 → ( 𝐵 = 𝑐 ↔ 𝐵 = 𝐵 ) ) | |
| 46 | 31 45 | imbi12d | ⊢ ( 𝑐 = 𝐵 → ( ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐵 = 𝑐 ) ↔ ( [ 𝐵 / 𝑥 ] 𝜑 → 𝐵 = 𝐵 ) ) ) |
| 47 | 44 46 | ralprg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐵 = 𝑐 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐵 = 𝐴 ) ∧ ( [ 𝐵 / 𝑥 ] 𝜑 → 𝐵 = 𝐵 ) ) ) ) |
| 48 | eqidd | ⊢ ( [ 𝐵 / 𝑥 ] 𝜑 → 𝐵 = 𝐵 ) | |
| 49 | 48 | biantru | ⊢ ( ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐵 = 𝐴 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐵 = 𝐴 ) ∧ ( [ 𝐵 / 𝑥 ] 𝜑 → 𝐵 = 𝐵 ) ) ) |
| 50 | 1 | sbcieg | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| 51 | 50 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| 52 | 51 | imbi1d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐵 = 𝐴 ) ↔ ( 𝜓 → 𝐵 = 𝐴 ) ) ) |
| 53 | 49 52 | bitr3id | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐵 = 𝐴 ) ∧ ( [ 𝐵 / 𝑥 ] 𝜑 → 𝐵 = 𝐵 ) ) ↔ ( 𝜓 → 𝐵 = 𝐴 ) ) ) |
| 54 | 47 53 | bitrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐵 = 𝑐 ) ↔ ( 𝜓 → 𝐵 = 𝐴 ) ) ) |
| 55 | 54 | anbi2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝜒 ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐵 = 𝑐 ) ) ↔ ( 𝜒 ∧ ( 𝜓 → 𝐵 = 𝐴 ) ) ) ) |
| 56 | eqcom | ⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) | |
| 57 | 56 | imbi2i | ⊢ ( ( 𝜓 → 𝐵 = 𝐴 ) ↔ ( 𝜓 → 𝐴 = 𝐵 ) ) |
| 58 | 57 | anbi2i | ⊢ ( ( 𝜒 ∧ ( 𝜓 → 𝐵 = 𝐴 ) ) ↔ ( 𝜒 ∧ ( 𝜓 → 𝐴 = 𝐵 ) ) ) |
| 59 | 55 58 | bitrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝜒 ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐵 = 𝑐 ) ) ↔ ( 𝜒 ∧ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ) |
| 60 | 42 59 | orbi12d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ( 𝜓 ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ) ∨ ( 𝜒 ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐵 = 𝑐 ) ) ) ↔ ( ( 𝜓 ∧ ( 𝜒 → 𝐴 = 𝐵 ) ) ∨ ( 𝜒 ∧ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ) ) |
| 61 | 27 60 | bitrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝜑 ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝑥 = 𝑐 ) ) ↔ ( ( 𝜓 ∧ ( 𝜒 → 𝐴 = 𝐵 ) ) ∨ ( 𝜒 ∧ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ) ) |
| 62 | 7 61 | bitrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃! 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( ( 𝜓 ∧ ( 𝜒 → 𝐴 = 𝐵 ) ) ∨ ( 𝜒 ∧ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ) ) |