This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure of the tangent function with a real argument. (Contributed by David A. Wheeler, 15-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | retancl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 2 | tanval | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 4 | recoscl | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) ∈ ℝ ) | |
| 5 | resincl | ⊢ ( 𝐴 ∈ ℝ → ( sin ‘ 𝐴 ) ∈ ℝ ) | |
| 6 | redivcl | ⊢ ( ( ( sin ‘ 𝐴 ) ∈ ℝ ∧ ( cos ‘ 𝐴 ) ∈ ℝ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ∈ ℝ ) | |
| 7 | 5 6 | syl3an1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( cos ‘ 𝐴 ) ∈ ℝ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ∈ ℝ ) |
| 8 | 4 7 | syl3an2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ∈ ℝ ) |
| 9 | 8 | 3anidm12 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ∈ ℝ ) |
| 10 | 3 9 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) ∈ ℝ ) |