This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure of the tangent function with a real argument. (Contributed by David A. Wheeler, 15-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | retancl | |- ( ( A e. RR /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | tanval | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |
|
| 3 | 1 2 | sylan | |- ( ( A e. RR /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |
| 4 | recoscl | |- ( A e. RR -> ( cos ` A ) e. RR ) |
|
| 5 | resincl | |- ( A e. RR -> ( sin ` A ) e. RR ) |
|
| 6 | redivcl | |- ( ( ( sin ` A ) e. RR /\ ( cos ` A ) e. RR /\ ( cos ` A ) =/= 0 ) -> ( ( sin ` A ) / ( cos ` A ) ) e. RR ) |
|
| 7 | 5 6 | syl3an1 | |- ( ( A e. RR /\ ( cos ` A ) e. RR /\ ( cos ` A ) =/= 0 ) -> ( ( sin ` A ) / ( cos ` A ) ) e. RR ) |
| 8 | 4 7 | syl3an2 | |- ( ( A e. RR /\ A e. RR /\ ( cos ` A ) =/= 0 ) -> ( ( sin ` A ) / ( cos ` A ) ) e. RR ) |
| 9 | 8 | 3anidm12 | |- ( ( A e. RR /\ ( cos ` A ) =/= 0 ) -> ( ( sin ` A ) / ( cos ` A ) ) e. RR ) |
| 10 | 3 9 | eqeltrd | |- ( ( A e. RR /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) e. RR ) |