This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If B is an open subset of the subspace base set A , then any subset of B is open iff it is open in A . (Contributed by Mario Carneiro, 2-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restopnb | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) → ( 𝐶 ∈ 𝐽 ↔ 𝐶 ∈ ( 𝐽 ↾t 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr3 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) → 𝐶 ⊆ 𝐵 ) | |
| 2 | simpr2 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) → 𝐵 ⊆ 𝐴 ) | |
| 3 | 1 2 | sstrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) → 𝐶 ⊆ 𝐴 ) |
| 4 | dfss2 | ⊢ ( 𝐶 ⊆ 𝐴 ↔ ( 𝐶 ∩ 𝐴 ) = 𝐶 ) | |
| 5 | 3 4 | sylib | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) → ( 𝐶 ∩ 𝐴 ) = 𝐶 ) |
| 6 | 5 | eqcomd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) → 𝐶 = ( 𝐶 ∩ 𝐴 ) ) |
| 7 | ineq1 | ⊢ ( 𝑣 = 𝐶 → ( 𝑣 ∩ 𝐴 ) = ( 𝐶 ∩ 𝐴 ) ) | |
| 8 | 7 | rspceeqv | ⊢ ( ( 𝐶 ∈ 𝐽 ∧ 𝐶 = ( 𝐶 ∩ 𝐴 ) ) → ∃ 𝑣 ∈ 𝐽 𝐶 = ( 𝑣 ∩ 𝐴 ) ) |
| 9 | 8 | expcom | ⊢ ( 𝐶 = ( 𝐶 ∩ 𝐴 ) → ( 𝐶 ∈ 𝐽 → ∃ 𝑣 ∈ 𝐽 𝐶 = ( 𝑣 ∩ 𝐴 ) ) ) |
| 10 | 6 9 | syl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) → ( 𝐶 ∈ 𝐽 → ∃ 𝑣 ∈ 𝐽 𝐶 = ( 𝑣 ∩ 𝐴 ) ) ) |
| 11 | inass | ⊢ ( ( 𝑣 ∩ 𝐴 ) ∩ 𝐵 ) = ( 𝑣 ∩ ( 𝐴 ∩ 𝐵 ) ) | |
| 12 | simprr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ 𝐶 = ( 𝑣 ∩ 𝐴 ) ) ) → 𝐶 = ( 𝑣 ∩ 𝐴 ) ) | |
| 13 | 12 | ineq1d | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ 𝐶 = ( 𝑣 ∩ 𝐴 ) ) ) → ( 𝐶 ∩ 𝐵 ) = ( ( 𝑣 ∩ 𝐴 ) ∩ 𝐵 ) ) |
| 14 | simplr3 | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑣 ∈ 𝐽 ) → 𝐶 ⊆ 𝐵 ) | |
| 15 | dfss2 | ⊢ ( 𝐶 ⊆ 𝐵 ↔ ( 𝐶 ∩ 𝐵 ) = 𝐶 ) | |
| 16 | 14 15 | sylib | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑣 ∈ 𝐽 ) → ( 𝐶 ∩ 𝐵 ) = 𝐶 ) |
| 17 | 16 | adantrr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ 𝐶 = ( 𝑣 ∩ 𝐴 ) ) ) → ( 𝐶 ∩ 𝐵 ) = 𝐶 ) |
| 18 | 13 17 | eqtr3d | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ 𝐶 = ( 𝑣 ∩ 𝐴 ) ) ) → ( ( 𝑣 ∩ 𝐴 ) ∩ 𝐵 ) = 𝐶 ) |
| 19 | simplr2 | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑣 ∈ 𝐽 ) → 𝐵 ⊆ 𝐴 ) | |
| 20 | sseqin2 | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐵 ) | |
| 21 | 19 20 | sylib | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑣 ∈ 𝐽 ) → ( 𝐴 ∩ 𝐵 ) = 𝐵 ) |
| 22 | 21 | ineq2d | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) ∧ 𝑣 ∈ 𝐽 ) → ( 𝑣 ∩ ( 𝐴 ∩ 𝐵 ) ) = ( 𝑣 ∩ 𝐵 ) ) |
| 23 | 22 | adantrr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ 𝐶 = ( 𝑣 ∩ 𝐴 ) ) ) → ( 𝑣 ∩ ( 𝐴 ∩ 𝐵 ) ) = ( 𝑣 ∩ 𝐵 ) ) |
| 24 | 11 18 23 | 3eqtr3a | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ 𝐶 = ( 𝑣 ∩ 𝐴 ) ) ) → 𝐶 = ( 𝑣 ∩ 𝐵 ) ) |
| 25 | simplll | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ 𝐶 = ( 𝑣 ∩ 𝐴 ) ) ) → 𝐽 ∈ Top ) | |
| 26 | simprl | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ 𝐶 = ( 𝑣 ∩ 𝐴 ) ) ) → 𝑣 ∈ 𝐽 ) | |
| 27 | simplr1 | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ 𝐶 = ( 𝑣 ∩ 𝐴 ) ) ) → 𝐵 ∈ 𝐽 ) | |
| 28 | inopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑣 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽 ) → ( 𝑣 ∩ 𝐵 ) ∈ 𝐽 ) | |
| 29 | 25 26 27 28 | syl3anc | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ 𝐶 = ( 𝑣 ∩ 𝐴 ) ) ) → ( 𝑣 ∩ 𝐵 ) ∈ 𝐽 ) |
| 30 | 24 29 | eqeltrd | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝐽 ∧ 𝐶 = ( 𝑣 ∩ 𝐴 ) ) ) → 𝐶 ∈ 𝐽 ) |
| 31 | 30 | rexlimdvaa | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) → ( ∃ 𝑣 ∈ 𝐽 𝐶 = ( 𝑣 ∩ 𝐴 ) → 𝐶 ∈ 𝐽 ) ) |
| 32 | 10 31 | impbid | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) → ( 𝐶 ∈ 𝐽 ↔ ∃ 𝑣 ∈ 𝐽 𝐶 = ( 𝑣 ∩ 𝐴 ) ) ) |
| 33 | elrest | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) → ( 𝐶 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ∃ 𝑣 ∈ 𝐽 𝐶 = ( 𝑣 ∩ 𝐴 ) ) ) | |
| 34 | 33 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) → ( 𝐶 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ∃ 𝑣 ∈ 𝐽 𝐶 = ( 𝑣 ∩ 𝐴 ) ) ) |
| 35 | 32 34 | bitr4d | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) → ( 𝐶 ∈ 𝐽 ↔ 𝐶 ∈ ( 𝐽 ↾t 𝐴 ) ) ) |