This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the property A passes to open subspaces, then a space which is A is also locally A . (Contributed by Mario Carneiro, 2-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | restlly.1 | |- ( ( ph /\ ( j e. A /\ x e. j ) ) -> ( j |`t x ) e. A ) |
|
| restlly.2 | |- ( ph -> A C_ Top ) |
||
| Assertion | restlly | |- ( ph -> A C_ Locally A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restlly.1 | |- ( ( ph /\ ( j e. A /\ x e. j ) ) -> ( j |`t x ) e. A ) |
|
| 2 | restlly.2 | |- ( ph -> A C_ Top ) |
|
| 3 | 2 | sselda | |- ( ( ph /\ j e. A ) -> j e. Top ) |
| 4 | simprl | |- ( ( ( ph /\ j e. A ) /\ ( x e. j /\ y e. x ) ) -> x e. j ) |
|
| 5 | vex | |- x e. _V |
|
| 6 | 5 | pwid | |- x e. ~P x |
| 7 | 6 | a1i | |- ( ( ( ph /\ j e. A ) /\ ( x e. j /\ y e. x ) ) -> x e. ~P x ) |
| 8 | 4 7 | elind | |- ( ( ( ph /\ j e. A ) /\ ( x e. j /\ y e. x ) ) -> x e. ( j i^i ~P x ) ) |
| 9 | simprr | |- ( ( ( ph /\ j e. A ) /\ ( x e. j /\ y e. x ) ) -> y e. x ) |
|
| 10 | 1 | anassrs | |- ( ( ( ph /\ j e. A ) /\ x e. j ) -> ( j |`t x ) e. A ) |
| 11 | 10 | adantrr | |- ( ( ( ph /\ j e. A ) /\ ( x e. j /\ y e. x ) ) -> ( j |`t x ) e. A ) |
| 12 | elequ2 | |- ( u = x -> ( y e. u <-> y e. x ) ) |
|
| 13 | oveq2 | |- ( u = x -> ( j |`t u ) = ( j |`t x ) ) |
|
| 14 | 13 | eleq1d | |- ( u = x -> ( ( j |`t u ) e. A <-> ( j |`t x ) e. A ) ) |
| 15 | 12 14 | anbi12d | |- ( u = x -> ( ( y e. u /\ ( j |`t u ) e. A ) <-> ( y e. x /\ ( j |`t x ) e. A ) ) ) |
| 16 | 15 | rspcev | |- ( ( x e. ( j i^i ~P x ) /\ ( y e. x /\ ( j |`t x ) e. A ) ) -> E. u e. ( j i^i ~P x ) ( y e. u /\ ( j |`t u ) e. A ) ) |
| 17 | 8 9 11 16 | syl12anc | |- ( ( ( ph /\ j e. A ) /\ ( x e. j /\ y e. x ) ) -> E. u e. ( j i^i ~P x ) ( y e. u /\ ( j |`t u ) e. A ) ) |
| 18 | 17 | ralrimivva | |- ( ( ph /\ j e. A ) -> A. x e. j A. y e. x E. u e. ( j i^i ~P x ) ( y e. u /\ ( j |`t u ) e. A ) ) |
| 19 | islly | |- ( j e. Locally A <-> ( j e. Top /\ A. x e. j A. y e. x E. u e. ( j i^i ~P x ) ( y e. u /\ ( j |`t u ) e. A ) ) ) |
|
| 20 | 3 18 19 | sylanbrc | |- ( ( ph /\ j e. A ) -> j e. Locally A ) |
| 21 | 20 | ex | |- ( ph -> ( j e. A -> j e. Locally A ) ) |
| 22 | 21 | ssrdv | |- ( ph -> A C_ Locally A ) |