This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009) (Proof shortened by Mario Carneiro, 1-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restabs |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ||
| 2 | simp3 | ||
| 3 | ssexg | ||
| 4 | 3 | 3adant1 | |
| 5 | restco | ||
| 6 | 1 2 4 5 | syl3anc | |
| 7 | simp2 | ||
| 8 | sseqin2 | ||
| 9 | 7 8 | sylib | |
| 10 | 9 | oveq2d | |
| 11 | 6 10 | eqtrd |