This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the support of the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finite, the support of the function itself is finite. (Contributed by AV, 22-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressuppfi.b | ⊢ ( 𝜑 → ( dom 𝐹 ∖ 𝐵 ) ∈ Fin ) | |
| ressuppfi.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | ||
| ressuppfi.g | ⊢ ( 𝜑 → 𝐺 = ( 𝐹 ↾ 𝐵 ) ) | ||
| ressuppfi.s | ⊢ ( 𝜑 → ( 𝐺 supp 𝑍 ) ∈ Fin ) | ||
| ressuppfi.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | ||
| Assertion | ressuppfi | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressuppfi.b | ⊢ ( 𝜑 → ( dom 𝐹 ∖ 𝐵 ) ∈ Fin ) | |
| 2 | ressuppfi.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | |
| 3 | ressuppfi.g | ⊢ ( 𝜑 → 𝐺 = ( 𝐹 ↾ 𝐵 ) ) | |
| 4 | ressuppfi.s | ⊢ ( 𝜑 → ( 𝐺 supp 𝑍 ) ∈ Fin ) | |
| 5 | ressuppfi.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | |
| 6 | 3 | eqcomd | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) = 𝐺 ) |
| 7 | 6 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) = ( 𝐺 supp 𝑍 ) ) |
| 8 | 7 4 | eqeltrd | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) ∈ Fin ) |
| 9 | unfi | ⊢ ( ( ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) ∈ Fin ∧ ( dom 𝐹 ∖ 𝐵 ) ∈ Fin ) → ( ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) ∪ ( dom 𝐹 ∖ 𝐵 ) ) ∈ Fin ) | |
| 10 | 8 1 9 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) ∪ ( dom 𝐹 ∖ 𝐵 ) ) ∈ Fin ) |
| 11 | ressuppssdif | ⊢ ( ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) → ( 𝐹 supp 𝑍 ) ⊆ ( ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) ∪ ( dom 𝐹 ∖ 𝐵 ) ) ) | |
| 12 | 2 5 11 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ ( ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) ∪ ( dom 𝐹 ∖ 𝐵 ) ) ) |
| 13 | 10 12 | ssfid | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin ) |